Effect of Pull-Out Rate on Interfacial Bonding Strength of Fiber

Article Preview

Abstract:

This paper investigates the effect of different pull-out rates on interface bonding strength. The experimental results show that rate effect is also another significant effect factor which contributes to optical interface bonding strength. In the uniaxial tensile process, the interface bonding strength is attributed to the interplay between the shear force and the friction force. The critical strain rate for leading role between shear force and friction force is 10-1.5, when less than that friction force dominates in the interface bonding mechanism, otherwise shear force dominates.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

2831-2835

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Leung C. K. Y., et al. Delamination detection in laminate composites with an embedded fiber optical interferometric sensor[J]. Sensors and Actuators A, 2005, 119(2): 336~344.

DOI: 10.1016/j.sna.2004.10.007

Google Scholar

[2] Suopajarvi et al. Indicating cure and stress in composite containers using optical fibers[J]. Optical Engineering, 1995, 34(9): 2587~2591.

DOI: 10.1117/12.208131

Google Scholar

[3] Lekakou S. C., et al. Optical fibre sensor for monitoring flow and resin curing in composites manufacturing[J]. Composites: Part A (S1359-835X), 2006, 37(6): 934~938.

DOI: 10.1016/j.compositesa.2005.03.003

Google Scholar

[4] Dumitrescu O. R., et al. Near infrared spectroscopy for in-line monitoring during injection moulding[J]. Polymer Testing, 2005, 24(3): 367~375.

DOI: 10.1016/j.polymertesting.2004.10.003

Google Scholar

[5] Frazao O., et al. Simultaneous measurement of pressure and temperature using single mode optical fibres embedded in a hybrid composite laminated[J]. Composites Science and Technology, 2005, 65(11): 1756~1760.

DOI: 10.1016/j.compscitech.2005.03.002

Google Scholar

[6] Benchekchou B., Ferguson N. S. The effect of embedded optical fibres on the fatigue behaviour of composite plates [J]. Composite Structures, 1998(2), 41: 113~120.

DOI: 10.1016/s0263-8223(98)00034-8

Google Scholar

[7] Hadzic R., et al. Structural integrity analysis of embedded optical fibres in composite structures[J]. Composite Structures, 1999, 47(1~4): 759~765.

DOI: 10.1016/s0263-8223(00)00050-7

Google Scholar

[8] Ling H. Y., et al. Effects of embedded optical fibre on mode II fracture behaviours of woven composite laminates[J]. Composites: Part B, 2005, 36(6~7): 534~543.

DOI: 10.1016/j.compositesb.2005.01.008

Google Scholar

[9] Surgeon M., Wevers M. Static and dynamic testing of a quasi-isotropic composite with embedded optical fibres[J]. Composites: Part A, 1999, 30(3~4): 317~324.

DOI: 10.1016/s1359-835x(98)00117-1

Google Scholar

[10] Schaaf K., et al. Mechanical properties of composite materials with integrated embedded sensor networks[J]. Smart Structures and Materials 2005: Proc. of SPIE, 2005, 5765: 781~785.

DOI: 10.1117/12.600182

Google Scholar

[11] Melin L. G., et al. A study of the displacement field around embedded fiber optic sensors[J]. Composites: Part A, 1999, 30(11): 1267~1275.

DOI: 10.1016/s1359-835x(99)00036-6

Google Scholar

[12] Tanaka K., Minoshima K., Grela W., et al. Characterization of the aramid/epoxy interfacial properties by means of pull-out test and influence of water absorption[J]. Composites Science and Technology, 2002, 62(16): 2169-2177.

DOI: 10.1016/s0266-3538(02)00147-1

Google Scholar