A DFT Study of TiO2 Adsorption on GaN(0001)Line Defect Surface

Article Preview

Abstract:

TiO2 adsorption on GaN(0001) line defect surface has been explored by employing density functional theory. The total energy, density of states, surface energy (adsorption energy), formation energy and electron density of the various models have been obtained. Our calculations indicate that the model containing [11 line defect and one O atom at the vacancy of line defect for Ga-terminated surfaces prefers to adsorb TiO2, and the smallest adsorption energy is-11.258 eV. This study also shows that the TiO2 adsorption on line defect of [11 direction is also associated with the initial adsorption position of TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

2836-2841

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Mula, C. Adelmann, S. Moehl, J. Oullier, and B. Daudin: Phys. Rev. B Vol. 64 (2001), p.195406.

Google Scholar

[2] B. Heying, R. Averbeck, L. F. Chen, and E. Haus: J. Appl. Phys. Vol. 88(2000), p.1855.

Google Scholar

[3] C. Adelmann, J. Brault, G. Mula, B. Daudin, L. Lymperakis, and J. Neugebauer: Phys. Rev. B Vol. 67 (2003), p.165419.

DOI: 10.1103/physrevb.67.165419

Google Scholar

[4] G. Koblmüller, R. Averbeck, H. Riechert, and P. Pongratz: Phys. Rev. B Vol. 69 (2004), p.035325.

Google Scholar

[5] H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov and M. Burns: J. Appl. Phys. Vol. 76 (1994), p.1363.

Google Scholar

[6] N.M. Johnson, A.V. Nurmikko and S.P. DenBaars: Phys. Today Vol. 53 (2000), p.31.

Google Scholar

[7] S.C. Jain, M. Willander, J. Narayan and R. V. Overstraeten: J. Appl. Phys. Vol. 87 (2000), p.965.

Google Scholar

[8] P. J. Hansen, L. Shen, Y. Wu, A. Stonas, Y. Terao, S. Heikman, D. Buttari,T. R. Taylor, S. P. DenBaars, U. K. Mishra, R. A. York, and J. S. Speck: J. Vac. Sci. Technol. B Vol. 22(2004), p.2479.

DOI: 10.1116/1.1800352

Google Scholar

[9] I. Stolichnov, L. Malin, P. Muralt, and N. Setter: Appl. Phys. Lett. Vol. 88(2006), p.043512.

DOI: 10.1063/1.2168506

Google Scholar

[10] H. Wu, J. Yuan, T. Peng, Y. Pan, T. Han, and C. Liu: Appl. Phys. Lett. Vol. 94(2009), p.122904.

Google Scholar

[11] G. Mula, C. Adelmann, S. Moehl, J. Oullier, and B. Daudin: Phys. Rev. B Vol. 64(2001), 195406.

Google Scholar

[12] B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, and J.S. Speck: J. Appl. Phys. Vol. 88(2000), p.1855.

Google Scholar

[13] C. Adelmann, J. Brault, G. Mula, B. Daudin, L. Lymperakis, and J. Neugebauer: Phys. Rev. B Vol. 67 (2003), 165419.

DOI: 10.1103/physrevb.67.165419

Google Scholar

[14] G. Koblmüller, R. Averbeck, H. Riechert, and P. Pongratz: Phys. Rev. B Vol. 69(2004), p.035325.

Google Scholar

[15] O. Ambacher: J. Phys. D Vol. 31(1998), p.2653.

Google Scholar

[16] W.B. Luo, J. Zhu, H. Chen X.P. Wang, Y. Zhang and Y.R. Li: J. Appl. Phys. Vol. 106 (2009) , p.104120.

Google Scholar

[17] W.B. Luo, The Epitaxial Growth and Properties of Dielectric Oxide Films on GaN Semiconductors, Chengdu, University of Electronic Science and Technology of China, 20109(in Chinese).

Google Scholar

[18] P. Huang and C. Yang: Acta phys. Sin. Vol. 60(2011), p.106801(in Chinese).

Google Scholar

[19] A.L. Rosa and J. Neugebauer: Phys. Rev.B. Vol. 73 (2006), p.205346.

Google Scholar