Study on Separation/Enrichment of Copper (II) Using Microcrystalline Phenolphthalein Loaded with Cupferron

Article Preview

Abstract:

The paper presents a novel method for the separation/enrichment of trace Cu2+ using microcrystalline phenolphthalein loaded with cupferron (Cup) prior to the determination by spectrophoto- metry. The effects of different parameters,such as the dosages of phenolphthalein and Cup and acidity on the enrichment yield of Cu2+ have been investigated to select the experimental conditions. The possible enrichment mechanism of Cu2+ was discussed.The results showed that under the optimum conditions, Cu2+ could be quantificationally adsorbed on the surface of microcrystalline phenolphthalein in the form of the chelate precipitate of Cu (Cup)2 ,while Ni2+,Zn2+,Mn2+,Fe2+ and Al3+ could not be adsorbed at all.Therefore,Cu2+ was completely separated from the above metal ions in the solution. The quantitative separation/enrichment and determination of Cu2+ in various environmental water samples was performed, and the results agreed well with those obtained by FAAS method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

456-460

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Taskaev,E.; Penev,I.; Kinova,L. J. Radioanal. Nucl. Chem. 1988, 12(1), 83.

Google Scholar

[2] Alonso,A.; Almendral,M. -J.; Curto,Y.; Porras,M. -J. Microchim. Acta. 2003, 143, 217.

Google Scholar

[3] Wei,G. -T.; Chen,J. -C.; Yang,Z. J. Chin. Chem. Soc. 2003, 50, 1123.

Google Scholar

[4] Nuray, S.; Cigdem,A. Microchim. Acta. 2008, 162, 107.

Google Scholar

[5] Ghaedi,M.; Shokrollahi,A.; Niknam,K.; Niknam,E.; Soylak,M. Cent. Eur. J. Chem. 2009, 7(1) , 148.

Google Scholar

[6] Sakai,Y.; Tomura,T.; Ohshita,K.; Koshimizu,S. J. Radioanal. Nucl. Chem. 1998, 230(1- 2 ), 261.

Google Scholar

[7] Romero,R.; Jonsson,J. -A. Anal. Bioanal. Chem. 2005, 381, 1452.

Google Scholar

[8] Prakorn,R.; Kwanta,N.; Ura, Pancharoen. Korean J. Chem. Eng. 2004, 21(6), 1212.

Google Scholar

[9] Konar,B.; Basu,S. Fresenius J. Anal. Chem. 1994, 348, 281.

Google Scholar

[10] Khuhawar,M. -Y.; Lanjwani, S-N. Mikrochim. Acta. 1998, 129, 65.

Google Scholar

[11] Väisänen,A.; Suontamo,R.; Silvonen,J.; Rintala,J. Anal. Bioanal. Chem. 2002, 373, 93.

Google Scholar

[12] Hu,Q. -F.; Yang,G. -Y.; Zhao,Y. -Y.; Yin,J. -Y. Anal. Bioanal. Chem. 2003, 375, 831.

Google Scholar

[13] Guo,J. -J.; Su, Q-D.; Gan,W. -E. J. Chin. Chem. Soc. 2009, 56, 763.

Google Scholar

[14] Gholivand,M. -B.; Mozaffari,Y.; Sobhani,S.; et al. J. Anal. Chem. 2008, 63: 232.

Google Scholar

[15] Anjos,A. -D.; Ponce,L. -C.; Cadore,S.; et al. Talanta. 2007, 71, 1252.

Google Scholar

[16] Gholivand,M. -B.; Sobhani,S.; Khirdoosh,F. J. Chin. Chem. Soc. 2002, 49, 355.

Google Scholar

[17] Li,Q. -M.; Zhao, X, -H.; Guan,X.; Liu,G. -G. Ana. Chim. Acta. 2006, 562, 44.

Google Scholar

[18] Li,Q. -M.; Ouyang,R. -Z.; Zhu,G. -F.; Liu,G. -G. Chem. Res. Chinese U. 2005, 21, 622.

Google Scholar

[19] Tu,C. -Q.; Wen,X. -R. J. Chin. Chem. Soc. 2010, 57, 93.

Google Scholar

[20] Wen,X. -R.; Tu,C. -Q. J. Chin. Chem. Soc. 2012, 59, 1149.

Google Scholar

[21] Chang,W. -B.; Li,K. -A. Brief Handbook of Analytical Chemistry; Beijing University Press : Beijing, 1981; a 240, b 262.

Google Scholar

[22] Pan,J. -M.; Chen,Y. -S.; Yan,H. -T. Chromogenic Agent and Its Application in Metallurgical Analysis; Shanghai Scientific and Technical Publisher : Shanghai, 1981, 116.

Google Scholar