Influence of Urbanization on Haze

Article Preview

Abstract:

Defense Meteorological Satellite-Operational Linescan System night-time emission data was applied as a proxy approach to assess urbanization level. Using this approach, it was found the spatial distribution of annual haze days was consistent with that of night-time light intensity in Zhejiang. The intensities of haze and night-time light in Northeastern Zhejiang were greater than those in Southwestern Zhejiang, and the same intensities were higher in coastal areas (than inland areas). The distributions of haze and night-time light both presented the features of regional clusters and boundary crossing between urban and rural areas. From 1960 to 2010, the annual haze days exhibited three change phases separated by two change jumps around 1979 and 2000. The first and second change jumps corresponded to the reform and opening-up and to the intensified urbanization, respectively. A close relationship between haze and total night-time light was found, and the correlation coefficients were higher than 0.9. In the long term, a negative correlation between relative humidity and visibility was observed, but the synchronous delaying trends of relative humidity and visibility reveal that the visibility delay was induced by increased pollutants. A comparison of the change trends of relative humidity, particle concentration, and visibility in Hangzhou and Linan indicates that an atmosphere with drier and heavier air pollution surrounds urban areas. Therefore, urbanization has a significant impact on haze.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

92-101

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Amaral, S. ,Mara, G. ,Monteiro, A. M. V. ,Quintanilha, J. A., & Elvidge, C. D. (2005).

Google Scholar

[2] Chameides, W. L., Yu, H., Liu, S. C., Bergin, M., Zhou, X., Mearns, L., Wang, G., Kiang, C. S., Saylor, R. D., Luo, C., Huang, Y., Steiner, A., & Giorgi, F. (1999).

Google Scholar

[3] Dai, W., Gao, J. Q., Cao, G., & Ouyang, F. (2013). Chemical composition and source identification of PM2. 5 in the suburb of Shenzhen. China Atmospheric Research, 122, 391–400 (in Chinese).

DOI: 10.1016/j.atmosres.2012.12.004

Google Scholar

[4] David, J., & Blerkon, V. (1971). The effect of haze on the visibility of Martian Surface Features. ICARUS, 14, 235–244.

DOI: 10.1016/0019-1035(71)90059-5

Google Scholar

[5] Doyle, M., Stephen, D. Visibility trends in the UK 1950-1997. Atmospheric Environment, 2002, 36(19): 3161–3172.

DOI: 10.1016/s1352-2310(02)00248-0

Google Scholar

[6] Ghosh, T., Sutton, P., Powell, R., & Anderson, S. (2009). Estimation of Mexico's informal economy using DMSP nighttime lights data. IEEE, 978-1-4244-3461-9/09/©(2009).

DOI: 10.1109/urs.2009.5137751

Google Scholar

[7] He, C. Y., Shi, P. J., Li, J. G., Chen, J., Pan, Y. Z., Li, J., Zhuo, L., & Ichinose, T. (2006).

Google Scholar

[8] Joshi, P. K., Bairwa, B. M., Sharma, R., & Sinha, V. S. P. (2011). Assessing urbanization patterns over India using temporal DMSP-OLS night-time satellite data. Scientific Correspondence, 100(10), 1479–1482.

Google Scholar

[9] Khattatov, V. U., Tyabotov, A. E., Alekseyev, A. P., Postnov, A. A., & Stulov, E. A. (1997). Aircraft lidar studies of the Arctic haze and their meteorological interpretation. Atmospheric Research, 44(1-2), 99–111.

DOI: 10.1016/s0169-8095(97)00011-2

Google Scholar

[10] Kim, K. W., Kim, Y. J., & Bang, S. Y. (2008). Summer time haze characteristics of the urban atmosphere of Gwangju and the rural atmosphere of Anmyon, Korea. Environment Monitor Assess, 141, 189–199.

DOI: 10.1007/s10661-007-9887-8

Google Scholar

[11] Lee, K. H., Kim, Y. J., & Kim, M. J. (2004). Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004. Atmospheric Environment, 40, 5146–5155.

DOI: 10.1016/j.atmosenv.2006.03.050

Google Scholar

[12] Liu, P. F., Zhao, C. S., Gobel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W. Y., Deng, Z. Z., Ma, N., Mildenberger, K., Henning, S., Stratmann, F., & Wiedenshler, A. (2011).

Google Scholar

[13] Malm, W. C. (1992). Characteristics and origins of haze in the continental United States. Earth Science Reviews, 33 (1), 1–36.

DOI: 10.1016/0012-8252(92)90064-z

Google Scholar

[14] Milesi, C., Elvidge, C. D., Nemani, R. R., & Running, S. W. (2003). Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sensing of Environment, 86, 401–410.

DOI: 10.1016/s0034-4257(03)00081-6

Google Scholar

[15] Morris, R. E. ,Koo, B. ,Guenther, A., Yarwood, G., Mcnally, D., Tesche, T. W., Tonnesen, Gail., Boylan, James., & Brewer, P. (2006).

Google Scholar

[16] Niu, Z. C., Zhang, F. W., Chen, J. S., Yin, L. Q., Wang, S., & Xu, L.G. (2013). Carbonaceous species in PM2. 5 in the coastal urban agglomeration in the western Taiwan Strait Region, China. Atmospheric Research, 122, 102–110 (in Chinese).

DOI: 10.1016/j.atmosres.2012.11.002

Google Scholar

[17] Noh, Y. M., Muller, D., Shin, D. H., Lee, H., Jung, J. S., Lee, K. H., Cribb, M., Li, Z. Q., & Kim, Y. J. (2009).

Google Scholar

[18] Odman, M. T. ,Hu, Y. T. ,Russell, A. G., Hanedar, A., Boylan, J. W., & Brewer, P. F. (2009).

Google Scholar

[19] Park, R. J., Jacob, D. J., Kumar, N., & Yanosca, R. M. (2006).

Google Scholar

[20] Schichtel, B. A., Husar, R. B., Falke, S. R., & Wilson, W. E. (2001). Haze trends over the United States, 1980-1995. Atmospheric Environment, 35, 5205–5210.

DOI: 10.1016/s1352-2310(01)00317-x

Google Scholar

[21] Shwartz, S., Namer, E., & Schechner, Y. (2006). Blind haze separation. Proc. IEEE (CVPR), 11, 1984–(1991).

DOI: 10.1109/cvpr.2006.71

Google Scholar

[22] Sutton, P. (1997). Modeling Population Density with Night-Time Satellite Imagery and GIS. Computers, Environment and Urban Systems, 21(3 /4), 227–244.

DOI: 10.1016/s0198-9715(97)01005-3

Google Scholar

[23] Tan, J. H., Duan, J. C., Chen, D. H., Wang, X. H., Guo, S. J., Bi, X. H., Sheng, G. Y., He, K. B., & Fu, J. M. (2009). Chemical characteristics of haze during summer winter in Guangzhou. Atmospheric Research, 94(2), 238–245.

DOI: 10.1016/j.atmosres.2009.05.016

Google Scholar

[24] White, W. H., & Roberts, P. T. (1977). On the nature and origins of visibility reducing aerosols in the Los Angeles air basin. Atmospheric Environment, 11, 803–812.

DOI: 10.1016/0004-6981(77)90042-7

Google Scholar

[25] World Meteorological Organization. WMO-NO. 266- Compendium of Lecture Notes for Training Class Ⅳ Meteorological Personnel: Volume Ⅱ-Meteorology (2nd edition. 1984: 65, 244.

Google Scholar

[26] World Meteorological Organization. WMO-NO. 8- Guide to Meteorological Instruments and Methods of Observation (6th edition). 1996: I. 14–3.

Google Scholar

[27] Wu, D., Mao, J. T., Deng, X. J., Tie, X. X., Zhang, Y. H. Zeng, L. M., Li, F., Tan, H. B., Bi, X. Y., Huang, X. Y., Chen, J., & Deng, T. (2009).

Google Scholar

[28] Yan, P., Liu, G. Q., Zhou, X. J., Wang, J. L., Tang, J., Liu, Q., Wang, Z. F., & Zhou, H. G. (2010).

Google Scholar

[29] Yang, M., Wang, S., Zhou, Y., & Wang, L. T. (2011). Review on applications of DMSP/OLS night-time emissions data. Remote Sensing Technology and Application, 26(1), 45–51(in Chinese).

Google Scholar

[30] Zhang , Y.H. (2008). Air complex pollution is an incentive of haze. Environment, (7), 32–33 (in Chinese).

Google Scholar

[31] Zhu, T., Shang, J., & Zhao, D. F. (2010). The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Science China-Chemistry, 40(12), 1731–1740 (in Chinese).

DOI: 10.1007/s11426-010-4181-y

Google Scholar