[1]
Cucchiella, F., I. D'Adamo, and M. Gastaldi, A multi-objective optimization strategy for energy plants in Italy. Science of the Total Environment, 2013. 443(5): pp.955-964.
DOI: 10.1016/j.scitotenv.2012.11.008
Google Scholar
[2]
Cucchiella, F., et al., Renewable energy options for buildings: Performance evaluations of integrated photovoltaic systems. Energy and Buildings, 2012. 55: pp.208-217.
DOI: 10.1016/j.enbuild.2012.08.029
Google Scholar
[3]
Cucchiella, F., I. D'Adamo, and M. Gastaldi, Municipal waste management and energy recovery in an Italian region. Waste Management & Research, 2012. 30(12): pp.1290-1298.
DOI: 10.1177/0734242x12462284
Google Scholar
[4]
Cucchiella, F., I. D'Adamo, and M. Gastaldi, Modeling optimal investments with portfolio analysis in electricity markets. Energy Education Science and Technology Part A: Energy Science and Research, 2012. 30(1): pp.673-692.
Google Scholar
[5]
Cucchiella, F. and I. D'Adamo, Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems. Renewable and Sustainable Energy Reviews, 2012. 16(7): pp.5245-5259.
DOI: 10.1016/j.rser.2012.04.034
Google Scholar
[6]
Cucchiella, F. and I. D'Adamo, Feasibility study of developing photovoltaic power projects in Italy: An integrated approach. Renewable and Sustainable Energy Reviews, 2012. 16(3): pp.1562-1576.
DOI: 10.1016/j.rser.2011.11.020
Google Scholar
[7]
Sofianopoulou, S., Manufacturing cells efficiency evaluation using data envelopment analysis. Journal of Manufacturing Technology Management, 2006. 17(2): pp.224-238.
DOI: 10.1108/17410380610642287
Google Scholar
[8]
Cricelli, L., M. Gastaldi, and N. Levialdi, Efficiency Measurement of Factories Via Data Envelopment Analysis. Systems Analysis Modelling Simulation, 2002. 42(10): pp.1521-1536.
DOI: 10.1080/716067170
Google Scholar
[9]
Park, S. -U. and J. -B. Lesourd, The efficiency of conventional fuel power plants in South Korea: A comparison of parametric and non-parametric approaches. International Journal of Production Economics, 2000. 63(1): pp.59-67.
DOI: 10.1016/s0925-5273(98)00252-7
Google Scholar
[10]
Olatubi, W.O. and D.E. Dismukes, A data envelopment analysis of the levels and determinants of coal-fired electric power generation performance. Utilities Policy, 2000. 9(2): pp.47-59.
DOI: 10.1016/s0957-1787(01)00004-2
Google Scholar
[11]
Nag, B., Estimation of carbon baselines for power generation in India: the supply side approach. Energy Policy, 2006. 34(12): pp.1399-1410.
DOI: 10.1016/j.enpol.2004.09.011
Google Scholar
[12]
Korhonen, P.J. and M. Luptacik, Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 2004. 154(2): pp.437-446.
DOI: 10.1016/s0377-2217(03)00180-2
Google Scholar
[13]
Sarkis, J. and J.J. Cordeiro, Investigating technical and ecological efficiencies in the electricity generation industry: are there win-win opportunities? Journal of the Operational Research Society, 2009. 60(9): pp.1160-1172.
DOI: 10.1057/palgrave.jors.2602624
Google Scholar
[14]
Athanassopoulos, A.D., N. Lambroukos, and L. Seiford, Data envelopment scenario analysis for setting targets to electricity generating plants. European Journal of Operational Research, 1999. 115(3): pp.413-428.
DOI: 10.1016/s0377-2217(98)00205-7
Google Scholar
[15]
Vaninsky, A., Efficiency of electric power generation in the United States: Analysis and forecast based on data envelopment analysis. Energy Economics, 2006. 28(3): pp.326-338.
DOI: 10.1016/j.eneco.2006.02.007
Google Scholar
[16]
Charnes, A., W.W. Cooper, and E. Rhodes, Measuring the efficiency of decision making units. European Journal of Operational Research, 1978. 2(6): pp.429-444.
DOI: 10.1016/0377-2217(78)90138-8
Google Scholar