Metallurgical and Numerical Correlation of Mold Vibration with the Refinement of Al-Si Alloy

Article Preview

Abstract:

Applying mechanical vibration with subsonic frequencies during permanent mold casting enhances nucleation and improves mold-casting heat transfer. Despite the several published papers in this field, little attention was given to correlating the vibration parameters of frequency and amplitude with the casting microstructure. In this paper microstructure examination and numerical simulation are used to explain the microstructure refinement using mold-vibration. A 1-D numerical model is used to explain the different mechanisms that mold-vibration has at different frequencies of 100 Hz, 500 Hz, and 2000 Hz. Microstructure examination for samples of Al-12.6wt%Si are presented and a correlation with the numerical results using inverse heat conduction method is attempted. Results show that increasing the value of the apparent thermal diffusivity of the casting is as a result of vibration is a major factor in achieving the desired refinement. Improving the mold-casting heat transfer coefficient showed significant influence on the process only at high frequency of 2 kHz due to the low vibration amplitude used.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Pages:

601-610

Citation:

Online since:

December 2009

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ya Sokoloff: Acta Physicochem. Vol. 3 (1935), p.939.

Google Scholar

[2] J. Campbell: Int. Met. Rev. Vol. 2 (1981), p.71.

Google Scholar

[3] V. O. Abramov, O. V. Abramov, V. Bulgakov, F. Sommer: Mat. Let. Vol. 37 (1998), p.27.

Google Scholar

[4] R.T. Southin: J. Ins. Met. Vol. 94 (1966), p.401.

Google Scholar

[5] E. A. Hiedemann: J. Acous. Soc. Amer. Vol. 26 (1954), p.831.

Google Scholar

[6] N. Abu-Dheir, M. Khraisheh, K. Saito, A. Male: Mat. Sci. Eng. Vol. A393 (2005), p.109.

Google Scholar

[7] N. Abu-Dheir, M. Khraisheh, K. Saito, A. Male: Tran. NAMRI 33 (2005), p.311.

Google Scholar

[8] G. Schmid, A. Roll: Zeitschrift fur Electrochemie Vol. 45 (1939), p.769.

Google Scholar

[9] R. S. Richards, W. Rostoker: Tran. Amer. Soc. Met. Vol. 48 (1956), p.884.

Google Scholar

[10] N. Abu-Dheir, M. Khraisheh, K., A.: Solid. Alum. Alloys, TMS Proc. (2004), p.361.

Google Scholar

[11] W. Rostoker, M. J. Berger: Found. July, (1953), p.100, p.206.

Google Scholar

[12] A. N. Abd El-Azim, A. M. El-Sheikh, M. T El-Khair: Mat. Sci. For. Vol. 331-337 (2000), p.397.

Google Scholar

[13] P. Appendino, G. Crivellone, C. Mus, S. Spriano: Metall. Sci. Tech. Vol. 20 (1) ( 2002), p.27.

Google Scholar

[14] N. Abu-Dheir, M. Khraisheh, K. Saito: Mat. Proc. under Inf. Ext. Fields. TMS (2007), p.113.

Google Scholar

[15] M. Rappaz : Int. Mat. Rev. Vol. 34 (1989), p.93.

Google Scholar

[16] T. W. Clyne : Mat. Sci. Eng. Vol. 65 (1984), p.111.

Google Scholar

[17] J. Sengupta, S.L. Cockcroft, D.M. Maijer : A. Larouche, Mat. Sci. Eng. Vol. A397 (2005), p.157.

Google Scholar

[18] J. V. Beck, B. Blackwell, C. R. ST. Clair: Inverse Heat Conduction, Wiley, New York, (1985).

Google Scholar

[19] Metals Handbook, Vol. 1 - Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International 10th Ed. (1990).

DOI: 10.31399/asm.hb.v01.9781627081610

Google Scholar

[20] M. D. Peres, C. A. Siqueira, A. Garcia: J. All. Comp. Vol. 381 (2004), pp.168-181.

Google Scholar