Influence of ssDNA Immobilization on the Conductance of Solution Gated Graphene Transistors

Article Preview

Abstract:

Carboxyl-modified graphene materials in both oxide and reduced state were explored in parallel for the preparation of field-effect transistors (FET). They were solution gated by phosphate buffer solution (PBS) (pH 7.2). Their conductance were examined and compared with unmodified graphene transistors, firstly. Then, after single strand DNA molecules were immobilized on reduced and oxide graphene transistors, their conductance and compared. Here ssDNA molecules were amino-tagged at the terminal five. It was found that ambipolar characteristic was exhibited by reduced graphene transistors, even they were undergone carboxyl modification. And it was also discovered that there were opposite conductance variation with the increasing of ssDNA concentrations and bigger changes were obtained by reduced carboxyl-modified graphene transistors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

302-305

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Suman , A. Kumar: S. &T. Vol. 92(2008), p.122.

Google Scholar

[2] S. K. Sharma, N. Sehgal, A. Kumar: Curr. Appl. Phys. Vol. 3(2003), p.307.

Google Scholar

[3] M. Yin, C. Wu, L. Shao, W. Chan, A. Zhang, C. Lu, H. Tam: Analyst, 2013, 138, 1988-(1994).

Google Scholar

[4] H. Peng, L. Zhang, C. Soeller, J. Travas-Sejdic: Biomaterials. Vol. 30(2009), p.2132.

DOI: 10.1016/j.biomaterials.2008.12.065

Google Scholar

[5] S. Siddiquee, N. A. Yusof, A. B. Salleh, S. G. Tan, F. Abu Bakar: J. Solid State Electrochem. Vol. 16(2012), p.273.

Google Scholar

[6] M. Silvestrini, L. Fruk, P. Ugo: Biosens. Bioelectron. Vol. 40(2013), p.265.

Google Scholar

[7] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin: Electroanal. Vol. 22(2010), p.1027.

Google Scholar

[8] S. Licht, N. Myung, Y. Sun: Anal. Chem. Vol. 68(1996), p.954.

Google Scholar

[9] Y. Jia, X. -B. Yin, J. Zhang, S. Zhou, M. Song, K. -L. Xing: Analyst. Vol. 137(2012), p.5866.

Google Scholar

[10] Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, Y. Chen: Adv. Mater. Vol. 21(2009), p.1275.

Google Scholar

[11] Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto: Nano letters. Vol. 9(2009), p.3318.

Google Scholar

[12] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[13] Q. He, H. G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, H. Zhang: ACS Nano. Vol. 4(2010), p.3201.

Google Scholar

[14] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi: Adv. Funct. Mater. Vol. 19(2009), p. (1987).

Google Scholar

[15] K. -H. Liao, A. Mittal, S. Bose, C. Leighton, K. A. Mkhoyan, C. W. Macosko: ACS Nano. Vol. 5, p.1253.

Google Scholar

[16] D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace: Nat. Nanotechnol. Vol. 3(2008), p.101.

Google Scholar

[17] S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, S. T. Nguyen, R. S. Ruoff: Chem. Mater. Vol. 20(2008), p.6592.

Google Scholar

[18] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang: Adv. Mater. Vol. 20(2008), p.4490.

Google Scholar

[19] S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, R. S. Ruoff: Nano letters. Vol. 9 (2009), p.1593.

Google Scholar

[20] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff: Carbon. Vol. 45(2007), p.1558.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[21] K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla: Nano Lett. Vol. 9(2009), p.1058.

DOI: 10.1021/nl8034256

Google Scholar

[22] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff: Chem. Soc. Rev. Vol. 39(2010), p.228.

Google Scholar

[23] Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, A. C. Johnson: Nano letters. Vol. 9(2009), Vol. 1472.

Google Scholar

[24] T. -Y. Chen, P. T. K. Loan, C. -L. Hsu, Y. -H. Lee, J. Tse-Wei Wang, K. -H. Wei, C. -T. Lin, L. -J. Li: Biosen. & Bioelec. Vol. 41(2012), Vol. 103.

Google Scholar

[25] X. Dong, Y. Shi, W. Huang, P. Chen, L. J. Li: Adv. Mater. Vol. 22(2010), p.1649.

Google Scholar

[26] T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, C. M. Lieber: Nano letters. Vol. 10(2010), p.1098.

Google Scholar

[27] S. Mao, G. Lu, K. Yu, Z. Bo, J. Chen: Adv. Mater. Vol. 22(2010), p.3521.

Google Scholar

[28] C. Wu, Y. Zhou, X. Miao, L. Ling: Analyst. Vol. 136(2011), p.2106.

Google Scholar

[29] L. Cui, X. Lin, N. Lin, Y. Song, Z. Zhu, X. Chen, C. J. Yang, Chem. Commun. Vol. 48(2012), p.194.

Google Scholar

[30] J. -J. Liu, X. -R. Song, Y. -W. Wang, G. -N. Chen, H. -H. Yang: Nanoscale. Vol. 4(2012), p.3655.

Google Scholar

[31] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai: Nano Res. Vol. 1(2008), p.203.

Google Scholar

[32] G. Eda, G. Fanchini, M. Chhowalla: Nat. Nanotechnol., Vol. 3(2008), p.270.

Google Scholar