Synthesis and Application of Manganese Oxide Based Nanomaterials

Article Preview

Abstract:

Manganese oxide is one of the most attractive inorganic materials because of its structural flexibility and wide applications in catalysis, ion exchange, electrochemical supercapacitors, molecular adsorption, biosensors, and so on. In recently, manganese oxides nanomaterials, including MnO, MnO2 and Mn3O4, have attracted great interest as anode materials in lithium-ion batteries and water treatment due to their high theoretical capacity, environmental benignity, low cost, and special properties. Hence, manganese oxides nanostructures with excellent properties and various morphologies have been successfully synthesized. Herein, we provide a recent development of the synthesis of manganese oxides nanomaterials and their application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-36

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. G. Bruce, B. Scrosati and J. M. Tarascon, Angew. Chem. Int. Ed., Vol. 47 (2008), p.2930.

Google Scholar

[2] I. S. Hwang, J. C. Kim, S. D. Seo, S. J. Lee, J. H. Lee and D. W. Kim, Chem. Commun., Vol. 48 (2012), p.7061.

Google Scholar

[3] R. Song, H. H. Song, J. S. Zhou, X. H. Chen, B. Wu and H. Y. Yang, J. Mater. Chem., Vol. 22 (2012), p.12369.

Google Scholar

[4] H. Q. Li and H. S. Zhou, Chem. Commun., Vol. 48 (2012), p.1201.

Google Scholar

[5] Y. F. Deng, Z. N. Li, Z. C. Shi, H. Xu, F. Peng and G. H. Chen, RSC Adv., Vol. 2 (2012), p.4645.

Google Scholar

[6] L. Chang, L. Mai, X. Xu, Q. An, Y. Zhao, D. Wang and X. Feng, RSC Adv., Vol. 3 (2013), p. (1947).

Google Scholar

[7] J. Zhao, Z. Tao, J. Liang and J. Chen, Cryst. Growth Des., Vol. 8 (2008), p.2799.

Google Scholar

[8] B. Li, G. Rong, Y. Xie, L. Huang and C. Feng, Inorg. Chem., Vol. 45 (2006), p.6404.

Google Scholar

[9] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Nature, Vol. 407 (2000), p.496.

Google Scholar

[10] J. Cao, Y. Zhu, L. Shi, L. Zhu, K. Bao, S. Liu and Y. Qian, Eur. J. Inorg. Chem., Vol. 12 (2010), p.1172.

Google Scholar

[11] J. Cao, Q. Mao, L. Shi and Y. Qian, J. Mater. Chem., Vol. 21 (2011), p.16210.

Google Scholar

[12] J. B. Fei, Y. Cui, X. H. Yan, W. Qi, Y. Yang, K. W. Wang, Q. He and J. B. Li, Adv. Mater., Vol. 20 (2008), p.452.

Google Scholar

[13] H. Wang, J. Robinson, G. Diankov, H. Dai, J. Am. Chem. Soc., Vol. 132 (2010), p.3270.

Google Scholar

[14] H. Wang, L. Cui, Y. Yang, H. Casalongue, J. Robinson, Y. Liang, Y. Cui and H. Dai, J. Am. Chem. Soc., Vol. 132 (2010), p.13978.

Google Scholar

[15] J. Li, Y. Zhao, N. Wang, Y. Ding and L. Guan, J. Mater. Chem., Vol. 22 (2012), p.13002.

Google Scholar

[16] B. Ji, X. Jiao, N. Sui, Y. Duan and D. Chen, Cryst. Eng. Comm., Vol. 12 (2010), p.3229.

Google Scholar

[17] J. Cao, Y. Zhu, K. Bao, L. Shi, S. Liu and Y. Qian, J. Phys. Chem. C, Vol. 113 (2009), p.17755.

Google Scholar