Wind Tunnel Test of Effect of Sound-Absorbing Material on Lift of Two-Element Airfoil

Article Preview

Abstract:

The flow parameters of fluctuating pressure and fluctuating velocity in the gap can be changed by the porous absorption material on the leading edge of upper surface of the flap of multi-element airfoil (GAW-1),and the aerodynamic characteristics is also altered. Experiment was conducted in the NF-3 wind tunnel. It turns out that porous absorption material has a significant effect on fluctuating velocity (i.e. turbulent kinetic energy), and the lift coefficient drops when fluctuating velocity increases ; but the influence on RMS of fluctuating pressure on upper surface is not obvious; the average speed in gap is reduced. The PSD of fluctuating pressure and fluctuating velocity show that low-frequency signal has a more obvious influence on lift of multi-element airfoils than high-frequency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-23

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wang, J. J., Li, Y. C., and Choi, K. S. Gurney Flap-Lift Enhancement, Mechanisms and Applications, Progress in Aerospace Sciences Vol. 44, No. 1, 2008, pp.22-47. doi: 10. 1016/j. paerosci. 2007. 10. 001.

DOI: 10.1016/j.paerosci.2007.10.001

Google Scholar

[2] Ahuja, K. K., Whipkey, R. R., and Jones, G. S. Control of Turbulent Boundary Layer Flows by Sound, AIAA Paper 1983-0726, Apr. 1983. doi: 10. 2514/6. 1983-726.

DOI: 10.2514/6.1983-726

Google Scholar

[3] Ahuja, K. K., and Burrin, R. H. Control of Flow Separation by Sound, AIAA Paper 1984-2298, Oct. 1984. doi: 10. 2514/6. 1984-2298.

DOI: 10.2514/6.1984-2298

Google Scholar

[4] Zaman, K. B. M. Q., Bar-Sever, A., and Mangalam, S. M. Effect of Acoustic Excitation on the Flow over a Low-Re Airfoil, Journal of Fluid Mechanics Vol. 182, 1987, pp.127-148. doi: 10. 1017/s0022112087002271.

DOI: 10.1017/s0022112087002271

Google Scholar

[5] Hsiao, F. -B., Liu, C. -F., and Shyu, J. -Y. Control of Wall-Separated Flow by Internal Acoustic Excitation, AIAA Journal Vol. 28, No. 8, 1990, pp.1440-1446. doi: 10. 2514/3. 25236.

DOI: 10.2514/3.25236

Google Scholar

[6] Hsiao, F. -B., Shyuf, R. -N., and Chang, R. C. High Angle-of-Attack Airfoil Performance Improvement by Internal Acoustic Excitation, AIAA Journal Vol. 32, No. 3, 1994, pp.6-8. doi: 10. 1016/j. anplas. 2011. 08. 001.

DOI: 10.2514/3.12034

Google Scholar

[7] Salmon, I. H., and Ahmed, N. E. A. Delaying Stall by Acoustic Excitation Using a Vibrating Film Wing Surface, AIAA Paper 2004-4962, Aug. 2004. doi: 10. 2514/6. 2004-4962.

DOI: 10.2514/6.2004-4962

Google Scholar

[8] Yarusevych, S., Sullivan, P. E., and Kawall, J. G. Effect of Acoustic Excitation Amplitude on Laminar Boundary Layer Separation and Wake Development, AIAA Paper 2006-3685, Jun. 2006. doi: 10. 2514/6. 2006-3685.

DOI: 10.2514/6.2006-3685

Google Scholar

[9] Yarusevych, S., Sullivan, P. E., and Kawall, J. G. Effect of Acoustic Excitation Amplitude on Airfoil Boundary Layer and Wake Development, AIAA Journal Vol. 45, No. 4, 2007, pp.760-771. doi: 10. 2514/1. 25439.

DOI: 10.2514/1.25439

Google Scholar

[10] Sankaran, V., Erickson, R. R., and Soteriou, M. C. Effects of Acoustic Excitation on Bluff-Body Stabilized Premixed Reacting Flows, AIAA Paper 2010-1333, Jan. 2010. doi: 10. 2514/6. 2010-1333.

DOI: 10.2514/6.2010-1333

Google Scholar

[11] Iorz, V., and Pruh, E. Control of Self-Excited Roll Oscillations of Low-Aspect-Ratio Wings Using Acoustic Excitation, AIAA Paper 2011-36, Jan. 2011. doi: 10. 2514/6. 2011-36.

DOI: 10.2514/6.2011-36

Google Scholar