[1]
S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
K. An and Y. Lee, Electronic-structure engineering of carbon nanotubes, NANO: Brief Reports and Reviews, 1 (2006)115-138.
Google Scholar
[3]
S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau, and S. Abbasi, Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy, Advanced Drug Delivery Reviews, 63 (2011) 1340-1351.
DOI: 10.1016/j.addr.2011.06.013
Google Scholar
[4]
A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, and J. B. Nagy, Synthesis methods of carbon nanotubes and related materials, Materials, 3 (2010) 3092-3140.
DOI: 10.3390/ma3053092
Google Scholar
[5]
C. H. See and A. T. Harris, A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition, Industrial & engineering chemistry research, 46 (2007) 997-1012.
DOI: 10.1021/ie060955b
Google Scholar
[6]
M. Kumar and Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, Journal of nanoscience and nanotechnology, 10 (2010) 3739-3758.
DOI: 10.1166/jnn.2010.2939
Google Scholar
[7]
K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, and A. Lucas, Fe-catalyzed carbon nanotube formation, Carbon, 34 (1996) 1249-1257.
DOI: 10.1016/0008-6223(96)00074-7
Google Scholar
[8]
R. Sen, A. Govindaraj, and C. Rao, Carbon nanotubes by the metallocene route, Chemical physics letters, 267 (1997) 276-280.
DOI: 10.1016/s0009-2614(97)00080-8
Google Scholar
[9]
R. Bonadiman, M. Lima, M. De Andrade, and C. Bergmann, Production of single and multi-walled carbon nanotubes using natural gas as a precursor compound, Journal of materials science, 41 (2006) 7288-7295.
DOI: 10.1007/s10853-006-0938-2
Google Scholar
[10]
M. Wienecke, M. C. Bunescu, K. Deistung, P. Fedtke, and E. Borchartd, MWCNT coatings obtained by thermal CVD using ethanol decomposition, Carbon, 44 (2006) 718-723.
DOI: 10.1016/j.carbon.2005.09.020
Google Scholar
[11]
S. Paul and S. Samdarshi, A green precursor for carbon nanotube synthesis, New Carbon Material, 26 (2011) 85-88.
DOI: 10.1016/s1872-5805(11)60068-1
Google Scholar
[12]
J. Liu, M. Shao, X. Chen, W. Yu, X. Liu, and Y. Qian, Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process, Journal of the American Chemical Society, 125 (2003) 8088-8089.
DOI: 10.1021/ja035763b
Google Scholar
[13]
L. M. Cele and N. J. Coville, The negative effects of alcohols on carbon nanotube synthesis in a nebulised spray pyrolysis process, Carbon, 47 (2009) 1824-1832.
DOI: 10.1016/j.carbon.2009.03.031
Google Scholar
[14]
X. Qi, W. Zhong, Y. Deng, C. Au, and Y. Du, Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450 C and their magnetic properties, Carbon, 48 (2010) 365-376.
DOI: 10.1016/j.carbon.2009.09.038
Google Scholar
[15]
M. Shamsudin, N. Asli, S. Abdullah, S. Yahya, and M. Rusop, Effect of synthesis temperature on the growth iron-filled carbon nanotubes as evidenced by structural, micro-Raman, and thermogravimetric analyses, Advances in Condensed Matter Physics, 2012 (2012) Article ID 420619.
DOI: 10.1155/2012/420619
Google Scholar
[16]
M. Shamsudin, A. Suriani, S. Abdullah, S. Yahya, and M. Rusop, Impact of Thermal Annealing under Nitrogen Ambient on Structural, Micro-Raman, and Thermogravimetric Analyses of Camphoric-CNT, Journal of Spectroscopy, 2013 (2012) Article ID 167357.
DOI: 10.1155/2013/167357
Google Scholar
[17]
D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M. S. Meier, and J. P. Selegue, Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry, Nano Letters, 2 (2002) 615-619.
DOI: 10.1021/nl020297u
Google Scholar
[18]
M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports, 409 (2005) 47-99.
DOI: 10.1016/j.physrep.2004.10.006
Google Scholar
[19]
H. Li, N. Zhao, C. He, C. Shi, X. Du, and J. Li, Thermogravimetric analysis and TEM characterization of the oxidation and defect sites of carbon nanotubes synthesized by CVD of methane. Materials Science and Engineering: A, 473 (2008) 355-359.
DOI: 10.1016/j.msea.2007.04.003
Google Scholar
[20]
P. Ghosh, T. Soga, K. Ghosh, R. A. Afre, T. Jimbo, and Y. Ando, Vertically aligned N-doped carbon nanotubes by spray pyrolysis of turpentine oil and pyridine derivative with dissolved ferrocene, Journal of Non-Crystalline Solids, 354 (2008) 4101-4106.
DOI: 10.1016/j.jnoncrysol.2008.05.053
Google Scholar
[21]
C. J. Lee and J. Park, Growth and structure of carbon nanotubes produced by thermal chemical vapor deposition, Carbon, 39 (2001) 1891-1896.
DOI: 10.1016/s0008-6223(00)00311-0
Google Scholar
[22]
C. M. Chen, M. Chen, F. C. Leu, S. Y. Hsu, S. C. Wang, S. C. Shi, and C. F. Chen, Purification of multi-walled carbon nanotubes by microwave digestion method, Diamond and related materials, 13 (2004) 1182-1186.
DOI: 10.1016/j.diamond.2003.11.016
Google Scholar