Green and Economic Transparent Conductive Graphene Electrode for Organic Solar Cell: A Short Review

Article Preview

Abstract:

New market trend for organic solar cell (OSC) require lightweight, cost effective, environmentally friendly and flexible. Transparent conductive electrode (TCE) is a main building block in organic solar cell in determining the device performance. Indium tin oxide (ITO) is widely used as transparent conductive material however it has major drawbacks due to relatively expensive, brittle and it limited to use on flexible substrate. This paper provides a short review of the transparent conductive electrode material which required for OSC applications. Issues related with existing TCE material such as ITO is also highlighted. Thus, alternative green material resources which offer low cost, environmentally friendly, mechanically robust and low sheet resistances are strongly required. Graphene is suitable candidate due to their outstanding properties such as good electrical, green material, chemical and thermally stable as well as remarkable mechanical strength and flexibility. The performance of transparent graphene electrode using low cost fabrication method which related with electrical, optical and power conversion efficiency was reviewed. We believed this work will provide beneficial input toward the improvement of OSC device performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

316-321

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. G. Aberle, Surface passivation of crystalline silicon cell: A review, prog. Photovoltaics: Res. Appl. 8 (2000) 473-487.

DOI: 10.1002/1099-159x(200009/10)8:5<473::aid-pip337>3.0.co;2-d

Google Scholar

[2] Hong Wei Zhu, Jinquan Wie, Kunlin Wang, Dehai Wu, Applications of Carbon Materials in Photovoltaic Solar Cell, Solar Cell Energy Materials and Solar Cells 93 (2009) 1461-1470.

DOI: 10.1016/j.solmat.2009.04.006

Google Scholar

[3] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self organization of polymer blends, Nature Mater. 4 (2005) 864–868.

DOI: 10.1038/nmat1500

Google Scholar

[4] Andersson, A.; Johansson, N.; Bro Ms, P.; Yu, N.; Lupo, D.; Salaneck, W. R, Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs, Adv. Mater. 10 (1998) 859–863.

DOI: 10.1002/(sici)1521-4095(199808)10:11<859::aid-adma859>3.0.co;2-1

Google Scholar

[5] J. K. Wassei and R. B. Kaner, Mater. Today 13 (2010) 52-59.

Google Scholar

[6] Bernard Ratier, Jean-Michel Nunzi, Matt Aldissi, Thomas M. Kraft, Organic solar cell materials and active layer designs – Improvements with carbon nanotubes: A review, Polym. Int. 61, (2012) 342-354.

DOI: 10.1002/pi.3233

Google Scholar

[7] Z. Pan, H. Gu, M. T. Wu, Y. Li, Y. Chen, Graphene-based functional materials for organic solar cells, Optical Materials Express, 2, (2012) 814-824.

DOI: 10.1364/ome.2.000814

Google Scholar

[8] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007)183.

Google Scholar

[9] D. Fowler, M. J. Allen, V. C Tung, Y. Yang, R. B. Kaner, B. H. Weiller, Practical chemical sensors from chemically derived graphene, ACS Nano, 3 (2009) 301-306.

DOI: 10.1021/nn800593m

Google Scholar

[10] X. Zhuang, Y. Chen, Liu, G. Liu, P. Li, C. Zhu, E. Kang, K. Noeh, B. Zhang, J. Zhu, Y. Li, Conjugated-polymer-functionalized graphene oxide: Synthesis and non-volatile rewritable memory effect, Adv. Mater. 22 (2010) 1731-1735.

DOI: 10.1002/adma.200903469

Google Scholar

[11] J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, Organic solar cells with solution-processed graphene transparent slectrodes, Appl. Phys. Lett. 92 (2008) 263302 .

DOI: 10.1063/1.2924771

Google Scholar

[12] Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. M.Lam, and H. Zhang, Organic Photovoltaic Devices using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes, ACS Nano 4 (2010) 5263-5268.

DOI: 10.1021/nn1015874

Google Scholar

[13] Di Zhang, Wallace C. H. Choy, Charlie C. D. Wang, Xiao Li, Lili Fan, Kunlin Wang, and Hongwei Zhu, Polymer solar cells with gold nanoclusters decorated multi-layer graphene as transparent electrode, Appl. Phys. Lett. 99 (2011) 223302.

DOI: 10.1063/1.3664120

Google Scholar

[14] Z. Wang, Conor P. Puls, Neal E. Staley, Y. Zhang, Aaron Todd, J. Xu, Casey A. Howsare, Matthew J. Hollander, and Joshua A. Robinson, and Y. Liu, Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices, Physica E 44 (2011) 521-524.

DOI: 10.1016/j.physe.2011.10.003

Google Scholar

[15] L. G. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, C. Zhou, Continuous, highly flexible and transparent graphene films by chemical vapor deposition for organic photovoltaic, ACS Nano 4 (2012) 2865-2873.

DOI: 10.1021/nn901587x

Google Scholar

[16] Y.Y. Lee, K. H. Tu, C. Ch. Yu, S. S. Li, J. Y. Hwang, C. C. Lin, K. H. Chen, L. C. Chen, H. Li. Chen and C. W. Chen, Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/ releasing method, ACS Nano 5 (2011) 6564–6570.

DOI: 10.1021/nn201940j

Google Scholar

[17] Z. Liu, J. Li, Z. H. Sun, G. Tai, S. P. Lau and F. Yan, The applications of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells, ACS Nano, 6 (2012) 810-818.

DOI: 10.1021/nn204675r

Google Scholar

[18] X. Wang, L. J. Zhi, K. Mullen, Nano Lett. 8 (2008) 323.

Google Scholar

[19] X. Xia, S. Wang, Y. Jia, A. Bian, D. Wu, L. Zhang, A. Cao, C. Huang, Infrared-transparent Polymer Solar Cells, J. Mater. Chem. 20 (2010) 8478–848.

DOI: 10.1039/c0jm02406f

Google Scholar

[20] J.S. Huang, L. Gang, Y. Yang, A semitransparent plastic solar cell fabricated by a lamination process, Adv. Mater. 20 (2008)415–419.

DOI: 10.1002/adma.200701101

Google Scholar

[21] M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, Appl. Phys. Lett. 88 (2006) 233506.

DOI: 10.1063/1.2209887

Google Scholar

[22] Y. Shi, K. K. Kim, A. Reina, M. Hofmann, J. L. Li, K. Kong, Work function engineering of graphene electrode via chemical doping, ACS Nano, 4 (2010) 2689-2694.

DOI: 10.1021/nn1005478

Google Scholar