[1]
P. Soukiassian, Will graphene be the material of the 21st century?, MRS Bulletin 37 (2012) 1321.
DOI: 10.1557/mrs.2012.302
Google Scholar
[2]
K.S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
Google Scholar
[3]
P.R. Wallace, The band theory of graphite, Physical Review 71 (1947) 622–634.
Google Scholar
[4]
M. Sigal, Selling graphene by the ton, Nature Nanotechnology 4 (2009) 612-614.
Google Scholar
[5]
S. Bose et al., In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites, Polymer 51 (2010) 5921-5928.
DOI: 10.1016/j.polymer.2010.10.014
Google Scholar
[6]
E.J. Sandoz-Rosado, O.A. Tertuliano, E.J. Terrell, An atomistic study of the abrasive wear and failure of graphene sheets when used as a solid lubricant and a comparison to diamond-like-carbon coatings, Carbon 50 (2012) 4078-4084.
DOI: 10.1016/j.carbon.2012.04.055
Google Scholar
[7]
S. Sayyar et al., Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering, Carbon 52 (2013) 296-304.
DOI: 10.1016/j.carbon.2012.09.031
Google Scholar
[8]
D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications, Journal of Power Sources 196 (2011) 4873-4885.
DOI: 10.1016/j.jpowsour.2011.02.022
Google Scholar
[9]
C-M Gee et al., Flexible transparent electrodes made of electrochemically exfoliated graphene sheets from low-cost graphite pieces, Displays (2012).
DOI: 10.1016/j.displa.2012.11.002
Google Scholar
[10]
W. Lu, P. Soukiassian, J. Boeckl, Graphene: fundamentals and functionalities, MRS Buletin 37 (2012) 1119-1124.
DOI: 10.1557/mrs.2012.279
Google Scholar
[11]
A.L. Lavoisier. Traite´ e´le´mentaire de chimie. Paris; 1789.
Google Scholar
[12]
B. Lang, A LEED study of the deposition of carbon on platinum crystal surfaces, Surface Science 53 (1975) 317-329.
DOI: 10.1016/0039-6028(75)90132-6
Google Scholar
[13]
E. Rokuta et al., Vibrational spectra of the monolayer films of hexagonal boron nitride and graphite on faceted Ni (755), Surface Science 427-428 (1999) 97-101.
DOI: 10.1016/s0039-6028(99)00241-1
Google Scholar
[14]
A. Shukla et al., Graphene made easy: high quality large surface-area samples, Solid State Communications 149 (2009) 718-721.
DOI: 10.1016/j.ssc.2009.02.007
Google Scholar
[15]
S. Stankovich et al., Stable aqueous dispersions of graphitic nanoplates via the reduction of exfoliated graphite oxide in presence of poly(sodium 4-styrenesulfonate), Journal of Materials Chemistry 16 (2006) 155-158.
DOI: 10.1039/b512799h
Google Scholar
[16]
Y. Hernandez et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology 3 (2008) 563-568.
Google Scholar
[17]
P.R. Somani, S.P. Somani, M. Umeno, Planer nano-graphenes from camphor by CVD, Chemical Physics Letters 430 (2006) 56-59.
DOI: 10.1016/j.cplett.2006.06.081
Google Scholar
[18]
M.S. Shamsudin et al., Impact of Thermal Annealing under Nitrogen Ambient on Structural, Micro-Raman, and Thermogravimetric Analyses of Camphoric-CNT, Journal of Spectroscopy 2013 (2013), Art. ID 167357, 6 pages.
DOI: 10.1155/2013/167357
Google Scholar
[19]
S. Sharma et al., Influence of gas composition on the formation of graphene domain synthesized from camphor, Materials Letters 93 (2013) 258-262.
DOI: 10.1016/j.matlet.2012.11.090
Google Scholar
[20]
W. Liu et al., Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films, Thin Solid Films 518 (2010) S128–S132.
DOI: 10.1016/j.tsf.2009.10.070
Google Scholar
[21]
J. Wang et al., Free-standing subnanometer graphite sheets, Applied Physics Letters 85 (2004) 1265-1267.
Google Scholar
[22]
J.L. Qi et al., Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition, Applied Surface Science 257 (2011) 6531–6534.
DOI: 10.1016/j.apsusc.2011.02.069
Google Scholar
[23]
A.N. Obraztsov et al., DC discharge plasma studies for nanostructured carbon CVD, Diamond and Related Materials 12 (2003) 917–920.
DOI: 10.1016/s0925-9635(02)00338-2
Google Scholar
[24]
A.A.C. Ferrari et al., Raman spectrum of graphene and graphene layers, Physical Review Letters 97 (2006) Art. ID 187401, 4 pages.
Google Scholar
[25]
J.S. Park et al., G' band Raman spectra of single, double and triple layer graphene, Carbon 47 (2009) 1303-1310.
Google Scholar
[26]
A. Wang et al., Precision of three-dimensional atomic scale measurements from HRTEM images: What are the limits?, Ultramicroscopy 114 (2012) 20-30.
DOI: 10.1016/j.ultramic.2011.12.002
Google Scholar
[27]
J.C. Meyer et al., Direct imaging of lattice atoms and topological defects in graphene membranes, Nano Letters 8 (2008) 3582-3586.
DOI: 10.1021/nl801386m
Google Scholar
[28]
L-Y Meng, S-J Park, Influence of pH condition on colloidal suspension of exfoliated graphene oxide by electrostatic repulsion, Journal of Solid State Chemistry 186 (2012) 99–103.
DOI: 10.1016/j.jssc.2011.11.023
Google Scholar
[29]
H. Yue et al., The role of the lateral dimension of graphene oxide in the regulation of cellular responses, Biomaterials 33 (2012) 4013-4021.
DOI: 10.1016/j.biomaterials.2012.02.021
Google Scholar
[30]
D. Bradley, Is graphene safe?, Materials Today 15 (2012) 230.
Google Scholar
[31]
T.P.A. Devasagayam et al., Free radicals and antioxidants in human health: current status and future prospects, Journal of the Association of Physicians of India 52 (2004) 794-804.
Google Scholar
[32]
T. Kuilaa et al., Chemical functionalization of graphene and its applications, Progress in Materials Science 57 (2012) 1061–1105.
Google Scholar
[33]
W. Paul, C.P. Sharma, Blood Compatibility and Biomedical Applications of Graphene, Trends in Biomaterials & Artificial Organs 25 (2011) 91-94.
Google Scholar
[34]
J. Tang et al., Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags, Analytical Chemistry 83 (2011) 5407-5414.
DOI: 10.1021/ac200969w
Google Scholar
[35]
V.C. Sanchez et al., Biological interactions of graphene-family nanomaterials: an interdisciplinary review, Chemical Research in Toxicology 25 (2012) 15-34.
Google Scholar
[36]
A.S. Davies, C. Moores, R. Britton, The respiratory system: basic science and clinical conditions, first ed., Churchill Livingstone, Spain, 2003.
Google Scholar
[37]
A. Schinwald et al., Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties, ACS Nano 6 (2012) 736–746.
DOI: 10.1021/nn204229f
Google Scholar
[38]
L.Y. Qiu, Y.H. Bae, Polymer Architecture and Drug Delivery, Pharmaceutical Research 23 (2006) 1-30.
Google Scholar
[39]
K. Yang et al., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Letters 10 (2010) 3318-3323.
DOI: 10.1021/nl100996u
Google Scholar
[40]
L. Feng, Z. Liu, Graphene in biomedicine: opportunities and challenges, Nanomedicine 6 (2011) 317-324.
Google Scholar