Micro-Raman, Optical and Impedance Characteristics of CNT-Substituted Acrylate/CNT Nanocomposite Thin Film

Article Preview

Abstract:

Carbon nanotube (CNT) has been synthesized using camphor oil as a starting material via two-stage catalytic chemical vapor deposition. The as-synthesized CNT was then incorporated into acrylate matrix by suspension polymerization method, using various loading of CNT (as a filler) varied from 0.2 to 1.0 g with 0.2 g weight interval in the nanocomposite thin film. The acrylate/CNT nanocomposite thin film was characterized using micro-Raman, ultraviolet-visible and impedance spectrometer. As confirmed, the various loading of CNT had a significant impact on structural, optical and impedance characteristics. The paper contributes the recent achievements in material progress of CNT/polymer nanocomposite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

286-291

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] M. Monthioux, V.L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes?, Carbon 44 (2006) 1621–1623.

DOI: 10.1016/j.carbon.2006.03.019

Google Scholar

[3] L.V. Radushkevich and V.M. Lukyanovich, O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte (About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate), Zurn Fisic Chim (Soviet Journal of Physical Chemistry) 26 (1952) 88-95.

Google Scholar

[4] X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R.O. Jones, Y. Ando, Smallest carbon nanotube is 3 Å in diameter, Physical Review Letters 92 (2004) Art. ID 125502.

Google Scholar

[5] T. Hayashi, Y.A. Kim, T. Matoba, M. Esaka, K. Nishimura, T. Tsukada, M. Endo, M.S. Dresselhaus, Smallest freestanding single-walled carbon nanotube, Nano Letters 3 (2003) 887-889.

DOI: 10.1021/nl034080r

Google Scholar

[6] T. Matsuda, J. Sato, A. Ogino, and M. Nagatsu, Characteristics of 100 nm-dot array of vertically aligned carbon nanotube field emitters fabricated by DC plasma enhanced chemical vapor deposition, Journal of Plasma and Fusion Research SERIES 8 (2009) 539-543.

DOI: 10.1016/j.diamond.2008.09.005

Google Scholar

[7] S.V.N.T. Kuchibhatla, A.S. Karakoti, Debasis Bera, S. Seal, One dimensional nanostructured materials, Progress in Materials Science 52 (2007) 699–913.

DOI: 10.1016/j.pmatsci.2006.08.001

Google Scholar

[8] M.S. Shamsudin, A.B. Suriani, S. Abdullah, S.Y.S. Yahya, M. Rusop, Impact of Thermal Annealing under Nitrogen Ambient on Structural, Micro-Raman, and Thermogravimetric Analyses of Camphoric-CNT, Journal of Spectroscopy 2013 (2013) Art. ID. 167357.

DOI: 10.1155/2013/167357

Google Scholar

[9] M.S. Shamsudin, N.A. Asli, S. Abdullah, S.Y.S. Yahya, M. Rusop, Effect of Synthesis Temperature on the Growth Iron-Filled Carbon Nanotubes as Evidenced by Structural, Micro-Raman, and Thermogravimetric Analyses, Advances in Condensed Matter Physics 2012 (2012) Art. ID. 420619.

DOI: 10.1155/2012/420619

Google Scholar

[10] M.S. Shamsudin, M.F. Achoi, M.N. Asiah, L.N. Ismail, A.B. Suriani, S. Abdullah, S.Y.S. Yahya, M. Rusop, Journal of Nanomaterials 2012 (2012) Art. ID. 972126.

DOI: 10.1155/2012/972126

Google Scholar

[11] M.S. Shamsudin, M. Maryam, N.A. Asli, S.A.M. Zobir, M.A. Johari, S.F.M. Yusop, A.B. Suriani, S. Abdullah, S.Y.S. Yahya, M. Rusop, Structural and Thermal Properties of ACNT by Modified Deposition Method: Growth Time Approach, Nano Hybrids 2 (2012) 25-42.

DOI: 10.4028/www.scientific.net/nh.2.25

Google Scholar

[12] M.S. Shamsudin, S. Abdullah, M. Rusop, Structural and Thermal Behaviors of Iron-filled Align Carbon Nanotubes Formulated by Two-stage Catalytic Chemical Vapor Deposition, Advanced Materials Research 364 (2012) 191-195.

DOI: 10.4028/www.scientific.net/amr.364.191

Google Scholar

[13] M.S. Shamsudin, I.A. Lahori, A.B. Suriani, S. Abdullah, S.Y.S. Yahya, M. Rusop, Improving Structural and Micro-Raman Properties of Camphor-Grown Pristine Carbon Nanotubes with Special Focus on Single-Stage Thermal Annealing System, Advanced Materials Research 576 (2012) 454-458.

DOI: 10.4028/www.scientific.net/amr.576.454

Google Scholar

[14] F. Ahmadi, I.V. McLoughlin, S. Chauhan, G. ter-Haar, Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure, Progress in Biophysics and Molecular Biology 108 (2012) 119-138.

DOI: 10.1016/j.pbiomolbio.2012.01.004

Google Scholar

[15] V.K. Dobroserdov, The effect of low frequency ultrasonic and high frequency sound waves on workers, Hygiene and Sanitation 32 (1967) 176-181.

Google Scholar

[16] C.H. Allen, H. Frings, I. Rudnick, Some biological effects of intense high frequency airborne sound, Journal of Acoustical Society of America 20 (1948) 62-65.

DOI: 10.1121/1.1906349

Google Scholar

[17] M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy, Annual Review of Condensed Matter Physics 1 (2010) 89-108.

DOI: 10.1146/annurev-conmatphys-070909-103919

Google Scholar

[18] D. Kaewsai, A. Watcharapasorn, P. Singjai, S. Wirojanupatump, P. Niranatlumpong, S. Jiansirisomboon, Thermal sprayed stainless steel/carbon nanotube composite coatings, Surface and Coatings Technology 205 (2010) 2104–2112.

DOI: 10.1016/j.surfcoat.2010.08.113

Google Scholar

[19] S. Geng, P. Wang, T. Ding, Impedance characteristics and electrical modelling of multi-walled carbon nanotube/silicone rubber composites, Composites Science and Technology 72 (2011) 36–40.

DOI: 10.1016/j.compscitech.2011.08.021

Google Scholar