Prediction of Nanostructured ZnO Thin Film Properties Based on Neural Network

Article Preview

Abstract:

An approach in the prediction of zinc oxide (ZnO) thin films properties based on neural network is presented in this paper. The research had been focused on the electrical properties of ZnO. The sputtering power, substrate temperature, deposition time and oxygen ratio were selected as the input variables while the resistivity and conductivity were selected as the output. The numerical results obtained through the neural network model were compared with the experimental results. The result obtained from the system model of the proposed procedure was reasonably good and promising. Therefore, the prediction based on neural network model is a reliable approach compared to the traditional method of trial-and-error process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

266-269

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. G. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, Optically pumped lasing of ZnO at room temperature, Applied Physics. 70 (1997) 2230-2232.

DOI: 10.1063/1.118824

Google Scholar

[2] C. W. N. Y. Dai, Y. Zhang, Q.K. Li, Synthesis and optical properties of tetrapodlike zinc oxide nanorods, Chemical Physics Letters. 358 (2002) 83-86.

DOI: 10.1016/s0009-2614(02)00582-1

Google Scholar

[3] T. S. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, Recent progress in processing and properties of ZnO, Prog. Mater Sci. 50 (2005) 293-340.

DOI: 10.1016/j.pmatsci.2020.100669

Google Scholar

[4] T. S. D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, ZnO: growth, doping & processing, Mater. Today. 7 (2004) 34-40.

DOI: 10.1016/s1369-7021(04)00287-1

Google Scholar

[5] A. I. S. Choopun, R.D. Vispute, W. Noch, A. Balsamo, R.P. Sharma, T. Venkatesan, D.C. Look, Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire, Appl. Phys. 75 (1999) 3947-3949.

DOI: 10.1063/1.125503

Google Scholar

[6] C. N. X. W.S. Shi, O. Agyeman, Enhancement of the light emissions from zinc oxide films by controlling the post-treatment ambient, J. Appl. Phys. 91 (2002) 5640-5644.

DOI: 10.1063/1.1466527

Google Scholar

[7] T. O. M. Izaki, Transparent zinc oxide films prepared by electrochemical reaction, Appl. Phys. 68 (1996) 2439-2440.

DOI: 10.1063/1.116160

Google Scholar

[8] M. K. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nat. Mater. 4 (2005) 42-46.

DOI: 10.1038/nmat1284

Google Scholar

[9] S. C. Lam, Y.C., Zhai, L.Y., Tai, K. & Fok, An evolutionary approach for cooling system optimization in plastic injection moulding, International Journal of Production Research. 42 (2204) 2047-2061.

DOI: 10.1080/00207540310001622412

Google Scholar

[10] C. E. Kim, P. Moon, I. Yun, S. Kim, J.-M. Myoung, H. W. Jang, and J. Bang, Process estimation and optimized recipes of ZnO:Ga thin film characteristics for transparent electrode applications,Expert Systems with Applications. 38 (2011) 2823-2827.

DOI: 10.1016/j.eswa.2010.08.074

Google Scholar

[11] C. J. May, G. S., & Spanos, Fundamentals of semiconductor manufacturing and process control, Wiley & Sons, New Jersey , 2006.

Google Scholar

[12] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice Hall, New Jersey, 1999.

Google Scholar

[13] I. K. F.M. Ham, Principles of Neurocomputing for Science and Engineering, Mc-Graw Hill, New York, 2001.

Google Scholar

[14] A. Cevik, N. Atmaca, T. Ekmekyapar, and I. H. Guzelbey, Flexural buckling load prediction of aluminium alloy columns using soft computing techniques, Expert Systems with Applications. 36 (2009) 6332-6342.

DOI: 10.1016/j.eswa.2008.08.011

Google Scholar

[15] S. V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic, IEEE Press, New York, 1996.

Google Scholar

[16] Y. Huang, Y. Lan, S. J. Thomson, A. Fang, W. C. Hoffmann, and R. E. Lacey, Development of soft computing and applications in agricultural and biological engineering, Computers and Electronics in Agriculture. 71 (2010) 107-127.

DOI: 10.1016/j.compag.2010.01.001

Google Scholar

[17] G. S. Han, S.-S., & May, Using neural network process models to perform PECVD silicon dioxide recipe synthesis via genetic algorithms, IEEE Transactions on Semiconductor Manufacturing. 10 (1997) 279-287.

DOI: 10.1109/66.572083

Google Scholar

[18] M. Venkateswaran, S., Rai, M. M., Govindan, T. R., & Meyyappan, Neural network modeling of growth processes, Journal of the Electrochemical Society. 149 (2002) G137-G142.

DOI: 10.1149/1.1430721

Google Scholar