[1]
R. Tiwari, A. Knowles, J. Avineri, E. Dahal, K. Roy, Applications of Soft Computing: Recent Trends, Springer, New York, 2006.
DOI: 10.1007/978-3-540-36266-1
Google Scholar
[2]
Y.C. Lam, L.Y. Zhai, K. Tai, S.C. Fok, An evolutionary approach for cooling system optimization in plastic injection moulding, International Journal of Production Research. 42 (2004) 2047-2061.
DOI: 10.1080/00207540310001622412
Google Scholar
[3]
M. Ko, A. Tiwari, and J. Mehnen, A review of soft computing applications in supply chain management, Applied Soft Computing. 10 (2010) 661-674.
DOI: 10.1016/j.asoc.2009.09.004
Google Scholar
[4]
U. Maulik, Analysis of gene microarray data in a soft computing framework, Applied Soft Computing. 11 (2011) 4152-4160.
DOI: 10.1016/j.asoc.2011.03.004
Google Scholar
[5]
A. Abraham, R. Jain, J. Thomas and S.Y. Han, D-SCIDS: Distributed soft computing intrusion detection system, Journal of Network and Computer Applications. 30 (2007) 81-98.
DOI: 10.1016/j.jnca.2005.06.001
Google Scholar
[6]
Y. Huang, Y. Lan, S.J. Thomson, A. Fang, W.C. Hoffmann and R.E. Lacey, Development of soft computing and applications in agricultural and biological engineering, Computers and Electronics in Agriculture. 71 (2010) 107-127.
DOI: 10.1016/j.compag.2010.01.001
Google Scholar
[7]
W. Ho, J. Tsai and G. Hsu, Process Parameters Optimization: A Design Study for TiO Thin Film of Vacuum Sputtering Process, IEEE Transactions on Automation Science And Engineering. 7 (2010) 143-146.
DOI: 10.1109/tase.2009.2023673
Google Scholar
[8]
H.C. Lin, C.T. Su, C.C. Wang, B.H. Chang and R.C. Juang, Parameter optimization of continuous sputtering process based on Taguchi methods, neural networks, desirability function, and genetic algorithms, Expert Systems with Applications. 39 (2012) 12918-12925.
DOI: 10.1016/j.eswa.2012.05.032
Google Scholar
[9]
E. N. Cho, P. Moon, C.E. Kim and I. Yun, Modeling and optimization of ITO/Al/ITO multilayer films characteristics using neural network and genetic algorithm, Expert Systems with Applications. 39 (2012) 8885-8889.
DOI: 10.1016/j.eswa.2012.02.019
Google Scholar
[10]
B. Kim, S.J. Lee, C.H. Min and T.S. Kim, Optimization of transmittance characteristic of indium tin oxide film using neural networks, Metals and Materials International. 16 (2010) 793-797.
DOI: 10.1007/s12540-010-1016-5
Google Scholar
[11]
C.W. Yeh and K.R. Wu, Neural network-based system for optimizing process parameters of semiconductor compounds, 2010 2nd IEEE International Conference on Information Management and Engineering. (2010) 214-218.
DOI: 10.1109/icime.2010.5477804
Google Scholar
[12]
C.E. Kim, P. Moon, I. Yun, S. Kim, J.M. Myoung, H.W. Jang and J. Bang, Process estimation and optimized recipes of ZnO:Ga thin film characteristics for transparent electrode applications, Expert Systems with Applications. 38 (2011) 2823-2827.
DOI: 10.1016/j.eswa.2010.08.074
Google Scholar
[13]
C. Science, N. Pingtung and M.S. Road, Optimal Process Design Using Soft Computing Approaches, SICE Annual Conference. (2008) 344-347.
Google Scholar
[14]
A.S.M. Jaya, M. R. Muhamad, M.N. Abd Rahman and S.Z.M. Hashim, Application of Fuzzy Rule-Based Model to Predict TiAlN Coatings Roughness, Applied Mechanics and Materials. 110-116 (2011) 1072-1079.
DOI: 10.4028/www.scientific.net/amm.110-116.1072
Google Scholar
[15]
E. Zalnezhad, A.A.D. M. Sarhan and M. Hamdi, Prediction of TiN coating adhesion strength on aerospace AL7075-T6 alloy using fuzzy rule based system, International Journal of Precision Engineering and Manufacturing. 13 (2012) 1453-1459.
DOI: 10.1007/s12541-012-0191-3
Google Scholar
[16]
C.B. Yang, Multi-objective prediction model for the establishment of sputtered GZO semiconducting transparent thin films, Journal of Intelligent Manufacturing. (2011).
DOI: 10.1007/s10845-011-0614-5
Google Scholar
[17]
K. Danisman, S. Danisman, S. Savas and I. Dalkiran, Modelling of the hysteresis effect of target voltage in reactive magnetron sputtering process by using neural networks, Surface and Coatings Technology. 204 (2009) 610-614.
DOI: 10.1016/j.surfcoat.2009.08.048
Google Scholar