[1]
Kalaprasad, G. and Thornas, S. Hybrid fibre reinforced polymer composites. International Plastics Engineering and Technology 1 (1995) 87–98.
Google Scholar
[2]
Fu, S.Y., Lauke, B. and Mai, Y.W. Science and engineering of short fibre reinforced polymer composites. Plastic Information Direct 2009, Woodhead Publishers, State of Utah, USA.
DOI: 10.1533/9781845696498.1
Google Scholar
[3]
Tang, L.G. and Kardos, J.L. A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polymer Composites 18 (1997) 100–113.
DOI: 10.1002/pc.10265
Google Scholar
[4]
Donnet, J.B. and Bansaal, R.C., Carbon Fibers. Marcel Dekker, Inc. 1990, New York.
Google Scholar
[5]
Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., Van Vuure, A.W., Lomov, S.V. and Verpoest, I. Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes, Composite Science and Technology 70 (2010) 1346–1352.
DOI: 10.1016/j.compscitech.2010.04.010
Google Scholar
[6]
Sager, R.J., Klein, P.J., Lagoudas, D.C., Zhang, Q., Liu, J., Dai, L. and Baur, J.W. Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Composites Science and Technology 69 (2009) 898–904.
DOI: 10.1016/j.compscitech.2008.12.021
Google Scholar
[7]
Dai, L., Patil, A., Gong, X., Guo, Z., Liu, L., et al. Aligned nanotubes. ChemPhysChem 4 (2003) 1150–1169.
DOI: 10.1002/cphc.200300770
Google Scholar
[8]
Thostenson, E.T., Li, W.Z., Wang, D.Z and Ren, Z.F. Carbon nanotube/carbon fiber hybrid multiscale composites. Journal of Applied Physics 91 (2002) 6034-6037.
DOI: 10.1063/1.1466880
Google Scholar
[9]
Fan, Z., Wu, C., Chen, J. and Yi, S. Growth of carbon nanotubes on the surface of carbon fibers. Carbon 46 (2008) 365-389.
Google Scholar
[10]
Qiuhong, Z., Jianwei, L., Ryan, S., Liming, D. and Jeffery, B. Hierarchical composites of carbon nanotubes on carbon fiber: Influence of growth condition on fiber tensile properties. Composite Science and Technology 69 (2009) 594–601.
DOI: 10.1016/j.compscitech.2008.12.002
Google Scholar
[11]
Suraya, A.R., Vargis, C., Yunus, R. and Shamsudin, S. Evaluation of carbon vapour deposition technique from whiskerization treatment of carbon fibers. International Journal of Engineering and Technology 3 (2006) 85-90.
Google Scholar
[12]
Lee, Y.T., Kim, N.S., Parl, J., Han, J.B., Choi, Y.S., Ryu, H. and Lee, H.J. Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000oC. Chemical Physics Letters 372 (2003) 853–859.
DOI: 10.1016/s0009-2614(03)00529-3
Google Scholar
[13]
Kuwana, K. and Saito, K. Modeling ferrocene reactions and iron nanoparticle formation: Application to CVD synthesis of carbon nanotubes. Proceedings of the Combustion Institute 31 (2007) 1857-1864.
DOI: 10.1016/j.proci.2006.07.097
Google Scholar
[14]
Hui, Q., Alexander, B., Emile, S.G. and Milo, S.P. Carbon nanotube grafted carbon fibres: A study of wetting and fibre fragmentation. Composites: Part A 41 (2010) 1107–1114.
DOI: 10.1016/j.compositesa.2010.04.004
Google Scholar
[15]
Kelly, A. and Tyson, W.R. Tensile properties of fiber-reinforced metals: copper/tungsten and copper/molybdenum. Journal of the Mechanics and Physics of Solids 13 (1965) 329–50.
DOI: 10.1016/0022-5096(65)90035-9
Google Scholar
[16]
Waterbury, M.C. and Drzal, L.T. On the determination of fiber strengths by in-situ fiber strength testing. Journal of Composites Technology and Research 13 (1991) 22–28.
DOI: 10.1520/ctr10070j
Google Scholar