[1]
R. Misra, S. Acharya, and S. K. Sahoo, Cancer nanotechnology: application of nanotechnology in Cancer therapy, Drug Discovery Today. 15 (2010) 842-850.
DOI: 10.1016/j.drudis.2010.08.006
Google Scholar
[2]
W. Cheung, F. Pontoriero, O. Taratula, A. M. Chen, and H. He, DNA and carbon nanotubes as medicine, Advanced Drug Delivery Reviews, 62 (2010) 633-649.
DOI: 10.1016/j.addr.2010.03.007
Google Scholar
[3]
F. Ye, H. Guo, H. Zhang, and X. He, Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system, Acta Biomaterialia, 6 (2010) 2212-2218.
DOI: 10.1016/j.actbio.2009.12.014
Google Scholar
[4]
C. L. Ursini, D. Cavallo, A. M. Fresegna, A. Ciervo, R. Maiello, G. Buresti, S. Casciardi, F. Tombolini, S. Bellucci, and S. Iavicoli, Comparative cyto-genotoxicity assessment of functionalized and pristine multiwalled carbon nanotubes on human lung epithelial cells, Toxicology in Vitro, 26 (2012) 831-840.
DOI: 10.1016/j.tiv.2012.05.001
Google Scholar
[5]
H. K. Lindberg, G. C. M. Falck, S. Suhonen, M. Vippola, E. Vanhala, J. Catalán, K. Savolainen, and H. Norppa, Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro, Toxicology Letters, 186 (2009) 166-173.
DOI: 10.1016/j.toxlet.2008.11.019
Google Scholar
[6]
K. Medepalli, B. Alphenaar, A. Raj, and P. Sethu, Evaluation of the direct and indirect response of blood leukocytes to carbon nanotubes (CNTs), Nanomedicine: Nanotechnology,Biology and Medicine, 7 (2011) 983-991.
DOI: 10.1016/j.nano.2011.04.002
Google Scholar
[7]
J. Wang, P. Sun, Y. Bao, J. Liu, and L. An, Cytotoxicity of single-walled carbon nanotubes on PC12 cells, Toxicology In Vitro, 25 (2011) 242-250.
DOI: 10.1016/j.tiv.2010.11.010
Google Scholar
[8]
L. Belyanskaya, S. Weigel, C. Hirsch, U. Tobler, H. F. Krug, and P. Wick, Effects of carbon nanotubes on primary neurons and glial cells, Neurotoxicology, 30 (2009) 702-711.
DOI: 10.1016/j.neuro.2009.05.005
Google Scholar
[9]
G. Caruso, M. Caffo, C. Alafaci, G. Raudino, D. Cafarella, S. Lucerna, F. M. Salpietro, and F. Tomasello, Could nanoparticle systems have a role in the treatment of cerebral gliomas?, Nanomedicine: Nanotechnology, Biology and Medicine, 7 (2011) 744-752.
DOI: 10.1016/j.nano.2011.02.008
Google Scholar
[10]
P. Wick, P. Manser, L. K. Limbach, U. Dettlaff-Weglikowska, F. Krumeich, S. Roth, W. J. Stark, and A. Bruinink, The degree and kind of agglomeration affect carbon nanotube cytotoxicity, Toxicology Letters, 168 (2007) 121-131.
DOI: 10.1016/j.toxlet.2006.08.019
Google Scholar
[11]
A. Huczko and H. Lange, Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy, Fullerene Science and Technology, 9 (2001) 247-250.
DOI: 10.1081/fst-100102972
Google Scholar
[12]
P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells, Journal of the American Chemical Society, 126 (2004) 15638-15639
DOI: 10.1021/ja0466311
Google Scholar
[13]
G. Bardi, P. Tognini, G. Ciofani, V. Raffa, M. Costa, and T. Pizzorusso, Pluronic-coated carbon nanotubes do not induce degeneration of cortical neurons in vivo and in vitro, Nanomedicine: Nanotechnology, Biology and Medicine, 5 (2009) 96-104.
DOI: 10.1016/j.nano.2008.06.008
Google Scholar
[14]
N. Rosni, Z. M. Noor, and M. M. Zain, Palm Puree: Potential Neuroprotective Effect from Elaeis guineensis Jacq. Fresh Fruit Bunch, 2011 International Conference on Environmental, Biomedical and Biotechnology (IPCBEE), 16 (2011).
Google Scholar
[15]
J. Han, B. S. Moon, W. S. Yang, J. B. Yoo, and C. Y. Park, Growth characteristics of carbon nanotubes by plasma enhanced hot filament chemical vapor deposition, Surface and Coatings Technology, 131 (2000) 93-97.
DOI: 10.1016/s0257-8972(00)00766-0
Google Scholar
[16]
M. Encinas, M. Iglesias, Y. Liu, H. Wang, A. Muhaisen, V. Cena, C. Gallego, and J. X. Comella, Sequential Treatment of SH-SY5Y Cells with Retinoic Acid and Brain Derived Neurotrophic Factor Gives Rise to Fully Differentiated, Neurotrophic FactorDependent, Human Neuron Like Cells, Journal of Neurochemistry, 75 (2000) 991-1003.
DOI: 10.1046/j.1471-4159.2000.0750991.x
Google Scholar
[17]
H. L. Karlsson, J. Gustafsson, P. Cronholm, and L. Möller, Size-dependent toxicity of metal oxide particles-a comparison between nano-and micrometer size, Toxicology Letters, 188 (2009) 112-118.
DOI: 10.1016/j.toxlet.2009.03.014
Google Scholar
[18]
O. Vittorio, V. Raffa, and A. Cuschieri, Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells, Nanomedicine: Nanotechnology, Biology and Medicine, 5 (2009) 424-431.
DOI: 10.1016/j.nano.2009.02.006
Google Scholar
[19]
J. Geys, B. Nemery, and P. H. M. Hoet, Assay conditions can influence the outcome of cytotoxicity tests of nanomaterials: Better assay characterization is needed to compare studies, Toxicology In Vitro, 24 (2009) 620-629.
DOI: 10.1016/j.tiv.2009.10.007
Google Scholar
[20]
K. T. Al-Jamal, L. Gherardini, G. Bardi, A. Nunes, C. Guo, C. Bussy, M. A. Herrero, A. Bianco, M. Prato, and K. Kostarelos, Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing, Proceedings of the National Academy of Sciences,108 (2011) 10952-10957.
DOI: 10.1073/pnas.1100930108
Google Scholar
[21]
A. Nel, T. Xia, L. Mädler, and N. Li, Toxic potential of materials at the nanolevel, Science, 311 (2006) 622-627.
DOI: 10.1126/science.1114397
Google Scholar
[22]
E. Niki, Free radicals initiators as source of water-or lipid-soluble peroxyl radicals, Methods in enzymology, 186 (1990) 100-108.
DOI: 10.1016/0076-6879(90)86095-d
Google Scholar
[23]
A. Yamamoto, R. Honma, M. Sumita, and T. Hanawa, Cytotoxicity evaluation of ceramic particles of different sizes and shapes, Journal of Biomedical Materials Research Part A, 68 (2003) 244-256.
DOI: 10.1002/jbm.a.20020
Google Scholar