Influence of Cathode Work Functions on the Photovoltaic Properties of MEH-PPV: TiO2 Bulk Heterojunction Solar Cell

Article Preview

Abstract:

Bulk heterojunction solar cell has received significant attention over the past decade due to low cost power generation and the potential to develop a clean renewable energy source [. We investigated the effect of different type of metal cathodes on the power conversion efficiency of bulk heterojunction solar cell based on a blend of conjugated polymer poly [2-methoxy 5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) with titanium dioxide (TiO2). In this case of study, Aluminum (Al) and gold (Au) has been chosen as the metal cathode due to the difference of work function and their wide application in hybrid solar cell. We show that the choice of metal cathode plays a role in determining overall device efficiency through their impact on short-circuit current, open circuit voltage and fill factor due to the influence of work function. It is found that the device employing Al metal cathode which has low work function is showing a comparable performance to the Au metal electrode with fill factor of over 20 % and a power conversion efficiency of 3.3x10-3 %. Overall it is demonstrated that the matching between the work function of the cathode and photoactive layer MEH-PPV: TiO2 is the most important factor towards best bulk heterojunction solar cell performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-403

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, Polymer-based solar cells, Materials Today.10 (2007) 28-33.

DOI: 10.1016/s1369-7021(07)70276-6

Google Scholar

[2] W. Cai, X. Gong, and Y. Cao, Polymer solar cells: Recent development and possible routes for improvement in the performance, Solar Energy Materials and Solar Cells.94 (2010) 114-127.

DOI: 10.1016/j.solmat.2009.10.005

Google Scholar

[3] P. M. Sirimanne, T. Shirata, L. Damodare, Y. Hayashi, T. Soga, and T. Jimbo, An approach for utilization of organic polymer as a sensitizer in solid-state cells, Solar Energy Materials and Solar Cells. 77 (2003) 15-24.

DOI: 10.1016/s0927-0248(02)00241-6

Google Scholar

[4] C. C. Oey, A. B. Djurisic, H. Wang, K. K. Y. Man, W. K. Chan, M. H. Xie, Y. H. Leung, A. Pandey, J. M. Nunzi, and P. C. Chui, Polymer TiO2 solar cells: TiO2 interconnected network for improved cell performance, Nanotechnology. 17 (2006) 706.

DOI: 10.1088/0957-4484/17/3/015

Google Scholar

[5] V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells, Advanced Functional Materials.16 (2006) 699-708.

DOI: 10.1002/adfm.200500420

Google Scholar

[6] M. Z. Musa, M. F. Malek, M. H. Mamat, U. M. Noor, N. A. Rashied, and M. Rusop, Effects Of Spin Coating Speed On Nanostructured Titanium Dioxide (TiO2) Thin Films Properties, American Institute of Physics, 1341 (2011) 33-36.

DOI: 10.1109/escinano.2010.5701016

Google Scholar

[7] A. K. Pandey, P. E. Shaw, I. D. W. Samuel, and J.-M. Nunzi, Effect of metal cathode reflectance on the exciton-dissociation efficiency in heterojunction organic solar cells, Applied Physics Letters. 94 (2009) 103303-3.

DOI: 10.1063/1.3098472

Google Scholar

[8] T.Soga, Nanostructured Materials for Solar Energy Conversion, Elsevier, (2006) 282.

Google Scholar

[9] K.Schulze, B.Maenning, K.Leo, Y.Tomita, C.May, J.Hupkes, E.Brier, and P.Bauerle, Organic solar cells based on indium tin oxide and aluminium doped zinc oxide anode, Appl.Phys.Lett. 91 (2007) 1-3.

DOI: 10.1063/1.2771050

Google Scholar

[10] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens, L. Sanchez, J. C. Hummelen, and T. Fromherz, The influence of materials work function on the open circuit voltage of plastic solar cells, Thin Solid Films.403-404 (2002) 368-372.

DOI: 10.1016/s0040-6090(01)01586-3

Google Scholar

[11] S. C. Price, A. C. Stuart, L. Yang, H. Zhou, and W. You,Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells, Journal of the American Chemical Society.133 (2011) 4625-4631.

DOI: 10.1021/ja1112595

Google Scholar

[12] L. Shen, G. Zhu, W. Guo, C. Tao, X. Zhang, C. Liu, W. Chen, S. Ruan, and Z. Zhong, Performance improvement of TiO2/P3HT solar cells using CuPc as a sensitizer, Applied Physics Letter. 92 (2008) 073307-073309.

DOI: 10.1063/1.2884270

Google Scholar

[13] Z. Tsung-Wei, L. Yun-Yue, L. Hsi-Hsing, C. Chun-Wei, C. Cheng-Hsuan, L. Sz-Chian, H. Hong-Yun, and S. Wei-Fang, A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices, Nanotechnology.17 (2006) 5387.

DOI: 10.1088/0957-4484/17/21/017

Google Scholar

[14] J. S. Salafsky, Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites, Physical Review B.59 (1999) 10885-10894.

DOI: 10.1103/physrevb.59.10885

Google Scholar

[15] P. Schilinsky, C.Waldauf, J. Hauch, and C. J. Brabec, Simulation of light intensity dependent current characteristics of polymer solar cells, Journal of Applied Physics. 95 (2004) 2816 -2819.

DOI: 10.1063/1.1646435

Google Scholar