[1]
A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, Polymer-based solar cells, Materials Today.10 (2007) 28-33.
DOI: 10.1016/s1369-7021(07)70276-6
Google Scholar
[2]
W. Cai, X. Gong, and Y. Cao, Polymer solar cells: Recent development and possible routes for improvement in the performance, Solar Energy Materials and Solar Cells.94 (2010) 114-127.
DOI: 10.1016/j.solmat.2009.10.005
Google Scholar
[3]
P. M. Sirimanne, T. Shirata, L. Damodare, Y. Hayashi, T. Soga, and T. Jimbo, An approach for utilization of organic polymer as a sensitizer in solid-state cells, Solar Energy Materials and Solar Cells. 77 (2003) 15-24.
DOI: 10.1016/s0927-0248(02)00241-6
Google Scholar
[4]
C. C. Oey, A. B. Djurisic, H. Wang, K. K. Y. Man, W. K. Chan, M. H. Xie, Y. H. Leung, A. Pandey, J. M. Nunzi, and P. C. Chui, Polymer TiO2 solar cells: TiO2 interconnected network for improved cell performance, Nanotechnology. 17 (2006) 706.
DOI: 10.1088/0957-4484/17/3/015
Google Scholar
[5]
V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells, Advanced Functional Materials.16 (2006) 699-708.
DOI: 10.1002/adfm.200500420
Google Scholar
[6]
M. Z. Musa, M. F. Malek, M. H. Mamat, U. M. Noor, N. A. Rashied, and M. Rusop, Effects Of Spin Coating Speed On Nanostructured Titanium Dioxide (TiO2) Thin Films Properties, American Institute of Physics, 1341 (2011) 33-36.
DOI: 10.1109/escinano.2010.5701016
Google Scholar
[7]
A. K. Pandey, P. E. Shaw, I. D. W. Samuel, and J.-M. Nunzi, Effect of metal cathode reflectance on the exciton-dissociation efficiency in heterojunction organic solar cells, Applied Physics Letters. 94 (2009) 103303-3.
DOI: 10.1063/1.3098472
Google Scholar
[8]
T.Soga, Nanostructured Materials for Solar Energy Conversion, Elsevier, (2006) 282.
Google Scholar
[9]
K.Schulze, B.Maenning, K.Leo, Y.Tomita, C.May, J.Hupkes, E.Brier, and P.Bauerle, Organic solar cells based on indium tin oxide and aluminium doped zinc oxide anode, Appl.Phys.Lett. 91 (2007) 1-3.
DOI: 10.1063/1.2771050
Google Scholar
[10]
C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens, L. Sanchez, J. C. Hummelen, and T. Fromherz, The influence of materials work function on the open circuit voltage of plastic solar cells, Thin Solid Films.403-404 (2002) 368-372.
DOI: 10.1016/s0040-6090(01)01586-3
Google Scholar
[11]
S. C. Price, A. C. Stuart, L. Yang, H. Zhou, and W. You,Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells, Journal of the American Chemical Society.133 (2011) 4625-4631.
DOI: 10.1021/ja1112595
Google Scholar
[12]
L. Shen, G. Zhu, W. Guo, C. Tao, X. Zhang, C. Liu, W. Chen, S. Ruan, and Z. Zhong, Performance improvement of TiO2/P3HT solar cells using CuPc as a sensitizer, Applied Physics Letter. 92 (2008) 073307-073309.
DOI: 10.1063/1.2884270
Google Scholar
[13]
Z. Tsung-Wei, L. Yun-Yue, L. Hsi-Hsing, C. Chun-Wei, C. Cheng-Hsuan, L. Sz-Chian, H. Hong-Yun, and S. Wei-Fang, A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices, Nanotechnology.17 (2006) 5387.
DOI: 10.1088/0957-4484/17/21/017
Google Scholar
[14]
J. S. Salafsky, Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites, Physical Review B.59 (1999) 10885-10894.
DOI: 10.1103/physrevb.59.10885
Google Scholar
[15]
P. Schilinsky, C.Waldauf, J. Hauch, and C. J. Brabec, Simulation of light intensity dependent current characteristics of polymer solar cells, Journal of Applied Physics. 95 (2004) 2816 -2819.
DOI: 10.1063/1.1646435
Google Scholar