[1]
Nihan Kosku Perkgoz, Refik Sina Toru, Emre Unal, Mustafa Akin Sefunc, Sumeyra Tek, Evren Mutlugun, Ibrahim Murat Soganci, Huseyin Celiker, Gulsen Celiker, and Hilmi Volkan Demir, Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Applied Catalysis B: Environmental. 105 (2011) 77-85.
DOI: 10.1016/j.apcatb.2011.03.037
Google Scholar
[2]
Vendula Houskova, Vaclav Stengl, Snejana Bakardjieva, and Nataliya Murafa, Photoactive materials prepared by homogeneous hydrolysis with thioacetamide: Part 2—TiO2/ZnO nanocomposites. Journal of Physics and Chemistry of Solids. 69 (2008) 1623–1631.
DOI: 10.1016/j.jpcs.2007.11.029
Google Scholar
[3]
Mohammad Hossein Habibi and Maryam Mikhak, Titania/zinc oxide nanocomposite coatings on glass or quartz substrate for photocatalytic degradation of direct blue 71. Applied Surface Science. 258 (2012) 6745– 6752.
DOI: 10.1016/j.apsusc.2012.03.042
Google Scholar
[4]
Muzafar A. Kanjwal, Nasser A. M. Barakat, Faheem A. Sheikh, Soo Jin Park, and Hak Yong Kim, Photocatalytic Activity of ZnO-TiO2 Hierarchical Nanostructure Prepared by Combined Electrospinning and Hydrothermal Techniques. Macromolecular Research. 18 (2010) 233-240.
DOI: 10.1007/s13233-010-0303-9
Google Scholar
[5]
S. Benkara and S. Zerkout, Preparation and characterization of ZnO nanorods grown into aligned TiO2 nanotube array. J. Mater. Environ. Sci. 3 (2010) 173-188.
Google Scholar
[6]
Mamat, M.H., et al., Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped zinc oxide nanorod–nanoflake network thin film prepared via ultrasonic-assisted sol–gel and immersion methods. Sensors and Actuators A: Physical. 171 (2011) 241-247.
DOI: 10.1016/j.sna.2011.07.002
Google Scholar
[7]
Li ShiWang, MingWei Xiao, Xin Jian Huang, and Yan DanWu, Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles. Journal of Hazardous Materials. 161 (2009) 49-54.
DOI: 10.1016/j.jhazmat.2008.03.080
Google Scholar
[8]
N. A. M. Asib, M.Z.M., S. Abdullah, and M.Rusop, Effect of RF Power on Optimization of Titanium Dioxide Nanostructures by RF Magnetron Sputtering. Advanced Materials Research Vol. 667 (2013) 104-109.
DOI: 10.4028/www.scientific.net/amr.667.104
Google Scholar
[9]
Cheol Ho Heo, Soon-Bo Lee, and Jin-Hyo Boo, Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics. Thin Solid Films. 475 (2005) 183– 188.
DOI: 10.1016/j.tsf.2004.08.033
Google Scholar
[10]
Firdaus, C.M., et al., Characterization of ZnO and ZnO: TiO2 Thin Films Prepared by Sol-Gel Spray-Spin Coating Technique. Procedia Engineering. 41 (2012) 1367-1373.
DOI: 10.1016/j.proeng.2012.07.323
Google Scholar
[11]
Prabitha B. Nair, V.B. Justinvictor, Georgi P.Daniel, K.Joy, V.Ramakrishnan, and P.V. Thomas, Effect of RF power and sputtering pressure on the structural and optical properties of TiO2 thin films prepared by RF magnetron sputtering. Applied Surface Science. 257 (2011) 10869-10875.
DOI: 10.1016/j.apsusc.2011.07.125
Google Scholar
[12]
W.D. Yu, X.M.L. and X.D. Gao, Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates. Applied Physics Letters. 84 (2004) 2658–2660.
DOI: 10.1063/1.1695097
Google Scholar
[13]
S.K. Sharma and G.J. Exarhos, Raman spectroscopic investigation of ZnO and doped ZnO films, nanoparticles and bulk material at ambient and high pressures. Solid State Phenomena. 55 (1997) 32-37.
DOI: 10.4028/www.scientific.net/ssp.55.32
Google Scholar
[14]
Z. Khusaimi, S.A., H. A. Rafaie, M. H. Mamat, N. Abdullah, S. Abdullah, and M. Rusop, Photoluminescence and Structural Properties of Gold Assisted Zinc Oxide Nanorods. Malaysian Journal of Science 28 (Special Edition). 28 (2009) 197-201
DOI: 10.1063/1.3160275
Google Scholar