Self-Catalyzed Thermal Chemical Vapor Deposited ZnO Nanotetrapods

Article Preview

Abstract:

ZnO in various nanostructures forms have been widely studied for the application such as in solar cells, light emitting diodes, UV sensors and so on. In this paper, we have successfully deposited ZnO nanotetrapods using thermal chemical vapour deposition (TCVD) technique on layer-by-layer ZnO seeded catalyst, with Zn powder and O2 gas as source materials. We demonstrate that by using double furnace TCVD system, ZnO nanotetrapods can be deposited at lower temperature than the vapour temperature of the Zn powder. In this paper we report the effect of different deposition temperature (450 °C to 600 °C) on the surface morphologies, crystalline structure and optical properties of the ZnO nanotetrapods. FE-SEM micrographs show that the length of the nanotetrapods arms decreases with the increase of the deposition temperature. PL spectra show that the visible emission are very low compared to the UV emission which indicates that the ZnO tetrapod have very low intrinsic defect. The highest UV emission intensity is given by the sample deposited at 500 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

670-674

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. C. Collins and R. J. Hauenstein, Fundamental Properties of ZnO, in: C. W. Litton, T. C. Collins, D. C. Reynolds, P. Capper, S. Kasap, and A. Willoughby, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, Wiley, United Kingdom, 2011, pp.1-28.

DOI: 10.1002/9781119991038.ch1

Google Scholar

[2] J. Xu, Q. Pan, Y. Shun, and Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators B. 66 (2000) 277-279.

DOI: 10.1016/s0925-4005(00)00381-6

Google Scholar

[3] T.L. Yang, D.H. Zhang, J. Ma, H.L. Ma, and Y. Chen, Transparent conducting ZnO: Al films deposited on organic substrates deposited by rf magnetron-sputtering, Thin Solid Films. 326 (1998) 60-62.

DOI: 10.1016/s0040-6090(98)00763-9

Google Scholar

[4] Y. Lin, Z.Zhang, Z. Tang, F. Yuan, and J. Li, Characterisation of ZnO‐based varistors prepared from nanometre Precursor powders, Adv. Funct. Mater. 9 (1999) 205-209.

DOI: 10.1002/1099-0712(199909/10)9:5<205::aid-amo383>3.0.co;2-8

Google Scholar

[5] J. Sengupta, R.K. Sahoo, K.K. Bardhan,and C.D. Mukherjee, Influence of annealing temperature on the structural, topographical and optical properties of sol-gel derived ZnO thin films, Mater. Lett. 65 (2011) 2572-2574.

DOI: 10.1016/j.matlet.2011.06.021

Google Scholar

[6] M.Karaliunas, T. Serevicius, E. Kuokstis, S. Jursenas, S.Ting, J.Huang, C.Yang, Optical Characterization of MBE-Grown ZnO Epilayers, Adv. Mater. Res. Vol. 222 (2011) 86-89.

DOI: 10.4028/www.scientific.net/amr.222.86

Google Scholar

[7] S. Y. Pung, K. L. Choy, and X. Hou, Tip-growth mode and base-growth mode of Au-catalyzed zinc oxide nanowires using chemical vapor deposition technique, J. Cryst. Growth. 312 (2010) 2049-2055.

DOI: 10.1016/j.jcrysgro.2010.03.035

Google Scholar

[8] D. Zhang, Z. Xue, and Q. Wang, The mechanisms of blue emission from ZnO films deposited on glass substrate by rf magnetron sputtering, J. Phys. D: Appl. Phys. 35, (2002) 2837.

DOI: 10.1088/0022-3727/35/21/321

Google Scholar

[9] X. Kong, X. Sun, X. Li, and Y. Li, Catalytic growth of ZnO nanotubes, Mater. Chem. Phys. 82 (2003) 997-1001.

Google Scholar

[10] S. N. Cha, B. G. Song, J. E. Jang, J. E. Jung, I.T. Han, J. H. Ha, J. P. Hong, D. J. Kang and J. M. Kim, Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer, Nanotechnology. 19 (2008) 235601.

DOI: 10.1088/0957-4484/19/23/235601

Google Scholar

[11] C. Wongchoosuk, K. Subannajui, A. Menzel, I. A. Burshtein, S. Tamir, Y. Lifshitz, and M. Zacharias: J. Phys. Chem. C. 115 (2011) p.757.

DOI: 10.1021/jp110416v

Google Scholar

[12] K. Al-Azri, R. M. Nor, Y. Amin, and M. S. Al-Ruqeishi, Effect of source temperature on the morphology and photoluminescence properties of ZnO nanostructures,Appl. Surf. Sci. 256, (2010) 5957-5960.

DOI: 10.1016/j.apsusc.2010.03.101

Google Scholar

[13] X. H. Sun, S. Lam, T. K. Sham, F. Heigl, A. Jurgensen, and N. B. Wong, Synthesis and Synchrotron Light-Induced Luminescence of ZnO Nanostructures: Nanowires, Nanoneedles, Nanoflowers, and Tubular Whiskers, J. Phys. Chem. Vol. 109 (2004) 3120-3125.

DOI: 10.1021/jp044926v

Google Scholar

[14] S. S. Shariffudin, M. H. Mamat, S. H. Herman, and M. Rusop, Influence of Drying Temperature on the Structural, Optical, and Electrical Properties of Layer-by-Layer ZnO Nanoparticles Seeded Catalyst, J. Nanomater. 2012 (2012) 1.

DOI: 10.1155/2012/359103

Google Scholar

[15] L. Ma and T. Guo, Morphology Control and Improved Field Emission Properties of ZnO Tetrapod Films Deposited by Electrophoretic Deposition, Ceram. Int. 39 (2013) 6923-6929.

DOI: 10.1016/j.ceramint.2013.02.027

Google Scholar

[16] N. Hassan, M. Hashim, and N. K. Allam, Low power UV photodetection characteristics of cross-linked ZnO nanorods/nanotetrapods grown on silicon chip, Sens. Actuators, A: Phys. 192 (2013) 124-129.

DOI: 10.1016/j.sna.2012.12.040

Google Scholar

[17] F. Wang, Z. Ye, D. Ma, L. Zhu, and F. Zhuge, Rapid synthesis and photoluminescence of novel ZnO nanotetrapods, J. Cryst. Growth. 274 (2005) 447-452.

DOI: 10.1016/j.jcrysgro.2004.10.035

Google Scholar