Electrical and Physical Properties of Nanocomposited MEH-PPV: CNTs for Organic Solar Cells Application

Article Preview

Abstract:

This paper discussed the physical and electrical properties of annealed and non-annealed CNTs in nanocomposited MEH-PPV:CNTs. By comparing these two types of CNTs, it is proven that annealed CNTs showed improvement in both properties compared to the non-annealed CNTs. The main improvement related to the physical properties from one aspect, influence the electrical of the nanocomposited MEH-PPV:CNTs thin film. The non-annealed CNTs with diameter size 8-9 nm is lessen to 5-6 nm after annealing. The photo conductivity increased from 11.2 x 10-3 S/m to 22.9 x 10-3 S/m.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

687-690

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Poncharal, S. Frank, Z. L. Wang, and W. De Heer, Conductance quantization in multiwalled carbon nanotubes, The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, vol. 9, (1999) pp.77-79.

DOI: 10.1007/s100530050402

Google Scholar

[2] PUTERI Sarah Mohamad Saad, MOHD Hazrin Zainal, Fazlinashatul Suhaidah Zahid, Zurita Zulkifli, Suriani Abu Bakar, and M. R. Mahmood, Investigation on Annealed CNTs to the Electrical and Optical Properties of Nanocomposited MEH-PPV: CNTs Thin Film, Advanced Materials Research vol. 364, (2012) pp.144-148.

DOI: 10.4028/www.scientific.net/amr.364.144

Google Scholar

[3] R. Andrews, D. Jacques, D. Qian, and T. Rantell, "Multiwall carbon nanotubes: synthesis and application," Accounts of chemical research, vol. 35 (2002) pp.1008-1017.

DOI: 10.1021/ar010151m

Google Scholar

[4] L. Ci, H. Zhu, B. Wei, C. Xu, and D. Wu, "Annealing amorphous carbon nanotubes for their application in hydrogen storage," Applied Surface Science, vol. 205 (2003) pp.39-43.

DOI: 10.1016/s0169-4332(02)00897-8

Google Scholar

[5] L. Valentini, I. Armentano, P. Santilli, J. M. Kenny, L. Lozzi, and S. Santucci, Electrical transport properties of conjugated polymer onto self-assembled aligned carbon nanotubes, Diamond and Related Materials, vol. 12 (2003) pp.1524-1531.

DOI: 10.1016/s0925-9635(03)00185-7

Google Scholar

[6] S. Musso, M. Giorcelli, M. Pavese, S. Bianco, M. Rovere, and A. Tagliaferro, "Improving macroscopic physical and mechanical properties of thick layers of aligned multiwall carbon nanotubes by annealing treatment," Diamond and Related Materials, vol. 17 (2008) pp.542-547.

DOI: 10.1016/j.diamond.2007.10.034

Google Scholar

[7] Y. S. Park, Y. C. Choi, K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, and Y. H. Lee, "High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing," Carbon, vol. 39 (2001) pp.655-661.

DOI: 10.1016/s0008-6223(00)00152-4

Google Scholar

[8] L. Valentini, C. Cantalini, L. Lozzi, S. Picozzi, I. Armentano, J. Kenny, and S. Santucci, Effects of oxygen annealing on cross sensitivity of carbon nanotubes thin films for gas sensing applications, Sensors and Actuators B: Chemical, vol. 100 (2004) pp.33-40.

DOI: 10.1016/j.snb.2003.12.017

Google Scholar

[9] K. Behler, S. Osswald, H. Ye, S. Dimovski, and Y. Gogotsi, Effect of thermal treatment on the structure of multi-walled carbon nanotubes, Journal of Nanoparticle Research, vol. 8 (2006) pp.615-625.

DOI: 10.1007/s11051-006-9113-6

Google Scholar

[10] L. T. Singh and K. K. Nanda, General theories for the electrical transport properties of carbon nanotubes, Nanotechnology, vol. 22 (2011) p.315705.

DOI: 10.1088/0957-4484/22/31/315705

Google Scholar

[11] M. Cadek, J. Coleman, K. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J. Nagy, K. Szostak, F. Beguin, and W. Blau, Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area, Nano letters, vol. 4 (2004) pp.353-356.

DOI: 10.1021/nl035009o

Google Scholar

[12] Y. Shen, A. R. Hosseini, M. H. Wong, and G. G. Malliaras, How to make ohmic contacts to organic semiconductors, ChemPhysChem, vol. 5 (2004) pp.16-25.

DOI: 10.1002/cphc.200300942

Google Scholar

[13] X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science and Engineering: R: Reports, vol. 49 (2005) pp.89-112.

DOI: 10.1016/j.mser.2005.04.002

Google Scholar

[14] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli, Mechanical properties of carbon nanotubes, Applied Physics A: Materials Science & Processing, vol. 69 (1999) pp.255-260.

DOI: 10.1007/s003390050999

Google Scholar

[15] R. Jina, Z. X. Zhoua, D. Mandrusa, I. N. Ivanovb, G. Eresa, J. Y. Howea, A. A. Puretzkya, and D. B. Geohegan, The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes, Physica B, vol. 388 (2007) pp.326-330.

DOI: 10.1016/j.physb.2006.06.135

Google Scholar

[16] X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, and Z. Jia, Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes, Chemical Physics Letters, vol. 376 (2003) pp.154-158.

DOI: 10.1016/s0009-2614(03)00960-6

Google Scholar

[17] M. Kosaka, T. W. Ebbesen, H. Hiura, and K. Tanigaki, Annealing effect on carbon nanotubes. An ESR study, Chemical Physics Letters, vol. 233 (1995) pp.47-51.

DOI: 10.1016/0009-2614(94)01416-s

Google Scholar

[18] G. Mazzoni, A. L. Lacaita, L. M. Perron, and A. Pirovano, On surface roughness-limited mobility in highly doped n-MOSFET's, Electron Devices, IEEE Transactions on, vol. 46 (1999) pp.1423-1428.

DOI: 10.1109/16.772486

Google Scholar

[19] A. J. Breeze, Z. Schlesinger, S. A. Carter, H. Tillmann, and H. H. Hörhold, Improving power efficiencies in polymer--polymer blend photovoltaics, Solar Energy Materials and Solar Cells, vol. 83 (2004) pp.263-271.

DOI: 10.1016/j.solmat.2004.02.029

Google Scholar