Nitrogen Doping of Amorphous Carbon by Aerosol-Assisted Chemical Vapor Deposition for Carbon-Based Solar Cell Applications

Article Preview

Abstract:

A novel self-prepared Aerosol-Assisted Chemical Vapor Deposition (AACVD) system was developed to deposit the amorphous carbon (a-C) thin films for the carbon-based solar cell applications. The nitrogen doping was applied towards the a-C thin films at deposition temperature of 600°C and 650°C. The samples gave the photoresponse characteristic for the electrical measurement by using the solar simulator system in under illumination condition. FESEM images signify the nanostructured sized a-C:N (<100nm) and EDX spectrum clarify the presence of N content in the N doped a-C. Solar cell efficiency was also obtained with the value of 0.001648% for 650°C and 0.000124% for 600°C when the a-C:N were deposited on p-Si substrate. The presence of the rectifying curves at the a-C:N/p-Si junction indicates the hetero-junction behavior between the p-n structure and thus proves the successful doping of N doped a-C using the AACVD technique.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

706-711

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Robertson, Materials Science and Engineering: R: Reports 37 (2002) 129.

Google Scholar

[2] A. M. M. Omer, M. Rusop, S. Adhikari, S. Adhikary, H. Uchida, M. Umeno, Diamond and Related Materials 14 (2005) 1084.

DOI: 10.1016/j.diamond.2004.12.010

Google Scholar

[3] P. K. Sitch, G. Jungnickel, T. KÃhler, T. Frauenheim, D. Porezag, Journal of Non-Crystalline Solids 227 (1998) 607.

DOI: 10.1016/s0022-3093(98)00232-4

Google Scholar

[4] A. Zeng, Y. Yin, M. Bilek, D. McKenzie, Surface and Coatings Technology 198 (2005) 202.

Google Scholar

[5] S. Liu, G. Wang, Z. Wang, Journal of Non-Crystalline Solids 353 (2007) 2796.

Google Scholar

[6] X. Hou, K. L. Choy, Chemical Vapor Deposition 12 (2006) 583.

Google Scholar

[7] M. G. Nolan, J. A. Hamilton, S. OBrien, G. Bruno, L. Pereira, E. Fortunato, R. Martins, I. M. Povey, M. E. Pemble, Journal of Photochemistry and Photobiology A: Chemistry 219 (2010) 10.

DOI: 10.1016/j.jphotochem.2011.01.010

Google Scholar

[8] T. Suemasu, T. Saito, K. Toh, A. Okada, M. A. Khan, Thin Solid Films, In Press, Corrected Proof.

Google Scholar

[9] L. Y. Huang, L. Meng, Materials Science and Engineering: B 137 (2007) 310.

Google Scholar

[10] M. Rusop, S. Adhikari, A. M. M. Omer, T. Soga, T. Jimbo, M. Umeno, Diamond and Related Materials 15 (2006) 6.

Google Scholar

[11] A. Liu, H. Wu, J. Zhu, J. Han, L. Niu, Diamond and Related Materials 17 (2008) 1927.

Google Scholar

[12] S. Adhikari, H. R. Aryal, D. C. Ghimire, G. Kalita, M. Umeno, Diamond and Related Materials 17 (2008) 1666.

DOI: 10.1016/j.diamond.2008.03.027

Google Scholar

[13] S.-S. Yap, H.-K. Yow, T.-Y. Tou, Thin Solid Films 517 (2009) 5569.

Google Scholar

[14] S. Adhikari, D. C. Ghimire, H. R. Aryal, S. Adhikary, H. Uchida, M. Umeno, Diamond and Related Materials 15 (2006) 1909.

DOI: 10.1016/j.diamond.2006.07.022

Google Scholar

[15] J. Robertson, Materials Science and Engineering: R: Reports 37 (2002) 129.

Google Scholar

[16] H. J.J, Journal of Non-Crystalline Solids 23 (1977) 21.

Google Scholar

[17] J. Robertson, C. A. Davis, Diamond and Related Materials 4 (1995) 441.

Google Scholar

[18] R. S. Singh, V. K. Rangari, S. Sanagapalli, V. Jayaraman, S. Mahendra, V. P. Singh, Solar Energy Materials and Solar Cells 82 (2004) 315.

Google Scholar

[19] A. Belaidi, R. Bayón, L. Dloczik, K. Ernst, M. C. Lux-Steiner, and R. Könenkamp, "Comparison of different thin film absorbers used in eta-solar cells," Thin Solid Films 431 (2003) 483.

DOI: 10.1016/s0040-6090(03)00223-2

Google Scholar

[20] L. Valentini, J. M. Kenny, Y. Gerbig, A. Savan, H. Haefke, L. Lozzi, S. Santucci, Thin Solid Films 124 (2001) 398.

DOI: 10.1016/s0040-6090(01)01458-4

Google Scholar