Dielectric Properties of PVDF/MgO Nanocomposites Thin Film with Various Annealing Temperatures

Article Preview

Abstract:

Poly (vinylideneflouride)/nanomagnesium oxide (PVDF/MgO) nanocomposites with MgO loading percentage of 7% were annealed with various annealing temperatures ranging from 70oC to 170oC. The PVDF/MgO(7%) thin films were fabricated using spin coating technique with MIM structure. The dielectric constant of PVDF/MgO(7%) was studied over a wide range of annealing temperatures with rapid removal from the oven once the annealing was utilized. The nanocomposites thin films annealed at temperature of 70oC (AN70) shows an improvement in the dielectric constant of 23 at 103 Hz compared to unannealed sample (UN), which was 21 at the same frequency. However, as the annealing temperatures were increased from 90oC (AN90) to 170o C (AN170), the dielectric constant of PVDF/MgO(7%) were found to decrease from 16 to 7 respectively, which were lower than the UN thin films. AN70 also produced low value of tangent loss at low frequency˼˰˸̱̈́̾˰δ˹˰̴̷̹̹̳̱̹̾̈́̾˰̸̱̈́̈́˼˰̵̷̱̱̼̹̾̾̾˰̱̈́˰temperatures 70oC is favourable temperature used to improve the dielectric constant of PVDF/MgO(7%).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

718-723

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ma, W., J. Zhang, and X. Wang, Crystallizaion and surface morphology of poly(vinylidene fluoride)/poly(methylmethacrylate) films by solution casting on different substrates, Appl. Surf. Sci. 254 (2008) 2947-2954.

DOI: 10.1016/j.apsusc.2007.10.037

Google Scholar

[2] He, F., J. Fan, and S. Lau, Thermal, mechanical, and dielectric properties of graphite reinforced poly(vinylidene fluoride) composites. Polym. Test. 27 (2008) 964-970.

DOI: 10.1016/j.polymertesting.2008.08.010

Google Scholar

[3] Layek, R.K., S. Samantha, D.P. Chatterjee and A.K. Nandi, Physical and mechanical properties of poly (methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites: Piezoelectric β- polymorph formation, Polymer, 51 (2010) 5846-5856.

DOI: 10.1016/j.polymer.2010.09.067

Google Scholar

[4] Manna, S., S.K. Batabyal, and A.K. Nandi, Preparation and Characterization of Silver−Poly(vinylidene fluoride) Nanocomposites:  Formation of Piezoelectric Polymorph of Poly(vinylidene fluoride), J. Phys. Chem. B, 110 (2006) 12318-12326.

DOI: 10.1021/jp061445y

Google Scholar

[5] Xu, H.-P. and Z.-M. Dang, Electrical property and microstructure analysis of poly(vinylidene fluoride)-based composites with different conducting fillers, Chem. Phys. Lett. 438 (2007) 196-202.

DOI: 10.1016/j.cplett.2007.02.076

Google Scholar

[6] Zak, A.K., W.C. Gan, W.H. Abd. Majid, M. Darroudi, and T.M. Velayutham, Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films. Ceram. Int., 37 (2011) 1653-1660.

DOI: 10.1016/j.ceramint.2011.01.037

Google Scholar

[7] Gandhi, S., P. Abiramipriya, N. Pooja, J. Jeyakumari, J.L. Arasi, A. Yelil, V. Dhanalakshmi, M. R. Gopinathan Nair, and R. Anbarasan, Synthesis and characterizations of nano sized MgO and its nano composite with poly(vinyl alcohol). J. Non-Cryst Solids, 357 (2011) 181-185.

DOI: 10.1016/j.jnoncrysol.2010.09.050

Google Scholar

[8] Wilson, S.A., R.P.J. Jourdain, Q. Zhang, R.A. Dorey, C.R. Bowen, M. Willander, Q.U. Wahab, S.M. Al-hili, O. Nur, E. Quandt, C. Johanssen, E. Pagounis, M. Kohl, J. Matovic, B. Samel, W. Van Der Wijngaart, E.W.H. Jager, Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M. Wendlant, C. Rusu, and K. Persson, New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng.,: R: Reports, 56 (2007) 1-129.

DOI: 10.1016/j.mser.2007.03.001

Google Scholar

[9] Rozana, M.D., A.N. Arshad, M.H. Wahid, Z. Habibah, L.N. Ismail, M.N. Sarip, and M. Rusop, Dielectric constant of PVDF/MgO nanocomposites thin films. IEEE Symposium on ISBEIA (2012) 18-22.

DOI: 10.1109/isbeia.2012.6422866

Google Scholar

[10] Natori K., O. Daijiro, and N. Sano, Thickness dependence of the effective dielectric constant in a thin film capacitor. App. Phys. Lett., 30 (1998) 632-634.

DOI: 10.1063/1.121930

Google Scholar

[11] Rozana, M.D., M.J. Reece, L. Famiza, M.H. Wahid, A.N. Arshad and M.N. Sarip, Effect of PTFE and OTS on the Ferroelectric Properties of PVDF-TrFE Thin Films. World App. Sci. J., 16 (2012) 1196-1202.

Google Scholar

[12] Blythe, T. and D. Bloor, Electrical Properties of Polymers. second edition ed. 2005, United Kingdom: Cambridge University Press. 492.

Google Scholar

[13] Rozana, M.D., M.H. Wahid, A.N. Arshad, M.N. Sarip, Z. Habibah, L.N. Ismail, M. Rusop, W.H.A. Majid, and W.C. Gan, Effect of various annealing temperature on the morphological and dielectric properties of Polyvinylidenefluoride-Trifluoroethylene thin film. SHUSER, (2012) 749-753.

DOI: 10.1109/shuser.2012.6268990

Google Scholar

[14] Newman, B.A., J.I. Scheinbeim, C.H. Yoon, and K.D. Pae, Polarization mechanisms in phase II poly(vinylidene fluoride) films. Macromolecules, 16 (1983) 60-68.

DOI: 10.1021/ma00235a012

Google Scholar

[15] Scheinbeim, J.I., B.A. Newman, and A. Sen, Field-induced crystallization in highly plasticized poly(vinylidene fluoride) films. Macromolecules, 19 (1986) 1454-1458.

DOI: 10.1021/ma00159a029

Google Scholar

[16] Patro, T.U., M.V. Mhalgi, D.V. Khakhar, and A. Misra, Studies on poly(vinylidene fluoride)-clay nanocomposites: Effect of different clay modifiers. Polymer, 49 (2008). 3486-3499.

DOI: 10.1016/j.polymer.2008.05.034

Google Scholar

[17] Marega, C. and A. Marigo, Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride). Eur. Polym. J., 39 (2003) 1713-1720.

DOI: 10.1016/s0014-3057(03)00062-4

Google Scholar

[18] Gregorio Jr, R. and D.S. Borges, Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer, 49 (2008). 4009-4016.

DOI: 10.1016/j.polymer.2008.07.010

Google Scholar

[19] Sutcu, M., S. Akkurt, and S. Okur, Influence of crystallographic orientation on hydration of MgO single crystals. Ceram. Int., 35 (2009) 2571-2576.

DOI: 10.1016/j.ceramint.2009.02.012

Google Scholar