Influence of Deposition Time on Amorphous Carbon Thin Films Performance with Aerosol-Assisted Chemical Vapor Deposition

Article Preview

Abstract:

Pure amorphous Carbon (a-C) thin films had been deposited by Aerosol-Assisted CVD (AACVD) onto glass substrate in Argon atmosphere. The camphor oil was chosen as the carbon precursor to prepare the a-C thin films with the deposition time of 15 minutes, 30 minutes, 45 minutes, 60 minutes and 75 minutes. The electrical, optical and structural properties of the deposited a-C were discussed by using the current-voltage solar simulator system, UV-Vis-Nir spectrophotometer and Raman spectroscope respectively. For the electrical characterization, the samples showed the photoresponse performance when being illuminated under AM 1.5 illuminations: 100 mW/cm2, 25°C. Transmittance value for the a-C thin films was also considered high ~80% and the structural analysis by using Raman spectroscope exhibit two main peaks known as the D-peak and G-peak which is typical for the a-C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

712-717

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Robertson, Diamond and Related Materials 3 (1994) 361.

Google Scholar

[2] J. Robertson, Journal of Non-Crystalline Solids 137 (1991) 825.

Google Scholar

[3] K. Abe and O. Eryu, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 242 (2006) 637.

DOI: 10.1016/j.nimb.2005.08.133

Google Scholar

[4] S. M. Mominuzzaman, M. Rusop, T. Soga, T. Jimbo, M. Umeno, Solar Energy Materials and Solar Cells 90 (2006) 3238.

DOI: 10.1016/j.solmat.2006.06.037

Google Scholar

[5] H. Zhu, J. Wei, K. Wang, D. Wu, Solar Energy Materials and Solar Cells 93 (2009) 1461.

Google Scholar

[6] A. Ilie, O. Harel, N. M. J. Conway, T. Yagi, J. Robertson, W. I. Milne, Journal of Applied Physics 87 (2000) 789.

Google Scholar

[7] M. Z. Islam, M. Alam, S. M. Mominuzzaman, M. Rusop, T. Soga, T. Jimbo, M. Umeno, Journal of Crystal Growth 288 (2006) 195.

DOI: 10.1016/j.jcrysgro.2005.12.052

Google Scholar

[8] J. Han, M. Tan, J. Zhu, S. Meng, B. Wang, S. Mu, D. Cao, Applied Physics Letters 90 (2007) 083508.

Google Scholar

[9] A. M. M. Omer, S. Adhikari, S. Adhikary, M. Rusop, H. Uchida, M. Umeno, T. Soga, Physica B: Condensed Matter 316 (2006) 376.

DOI: 10.1016/j.physb.2005.12.081

Google Scholar

[10] W. S. Choi, K. Kim, J. Yi, B. Hong, Materials Letters 62 (2008) 577.

Google Scholar

[11] N. D. Baydogan, Materials Science and Engineering B 70 (2004) 107.

Google Scholar

[12] O. S. Panwar, M. A. Khan, B. S. Satyanarayana, S. Kumar, and Ishpal, Applied Surface Science 256 (2010) 4383.

Google Scholar

[13] X. Hou, K. L. Choy, Chemical Vapor Deposition 12 (2006) 583.

Google Scholar

[14] Nurfadzilah Ahmad, Dayana Kamaruzzaman and Mohamad Rusop, Jpn. J. Appl. Phys. 51 (2012).

Google Scholar

[15] C. W. Tan, S. Maziar, E. H. T. Teo, B. K. Tay, Diamond and Related Materials 20 (2011) 290.

Google Scholar

[16] M. Ben Karoui, R. Gharbi, N. Elzayed, M. Fathallah, E. Tresso, Physics Procedia 2 (2009) 873.

DOI: 10.1016/j.phpro.2009.11.038

Google Scholar

[17] F. Alibart, O. Durand Drouhin, M. Lejeune, M. Benlahsen, S. E. Rodil, E. Camps, Diamond and Related Materials 17 (2008) 925.

DOI: 10.1016/j.diamond.2008.01.080

Google Scholar

[18] L. Y. Huang, L. Meng, Materials Science and Engineering: B137 (2007) 310.

Google Scholar

[19] J. L. Endrino, D. Horwat, A. Anders, J. Andersson, R. Gago, Plasma Processes and Polymers 6 (2009) 438.

Google Scholar

[20] M. Sharon, D. Pradhan, Y. Ando, X. Zhao, Current Applied Physics 2 (2002) 445.

Google Scholar

[21] T. Suemasu, T. Saito, K. Toh, A. Okada, M. A. Khan, Thin Solid Films 519 (2011) 8501.

DOI: 10.1016/j.tsf.2011.05.028

Google Scholar

[22] K. Chakrabarti, R. Chakrabarti, K. K. Chattopadhyay, S. Chaudhuri, A. K. Pal, Diamond and Related Materials 7 (1998) 845.

DOI: 10.1016/s0925-9635(97)00312-9

Google Scholar

[23] R. Gharbi, M. Fathallah, N. Alzaied, E. Tresso, A. Tagliaferro, Materials Science and Engineering: C 28 (2008) 795.

DOI: 10.1016/j.msec.2007.10.022

Google Scholar

[24] G. Fanchini, S. C. Ray, A. Tagliaferro, Diamond and Related Materials 12 (2007) 891.

Google Scholar

[25] T. J, Materials Research Bulletin 3 (1968) 37.

Google Scholar

[26] T.-L. Sung, Y.-A. Chao, C.-M. Liu, K. Teii, S. Teii, C.-Y. Hsu, Thin Solid Films 519 (2011) 6688.

DOI: 10.1016/j.tsf.2011.04.075

Google Scholar

[27] S. Adhikari, D. C. Ghimire, H. R. Aryal, S. Adhikary, H. Uchida, M. Umeno, Diamond and Related Materials 15 (2006) 1909.

DOI: 10.1016/j.diamond.2006.07.022

Google Scholar

[28] X. R. Deng, Y. X. Leng, X. Dong, H. Sun, N. Huang, Surface and Coatings Technology, 206 (2010) 1007.

Google Scholar

[29] H. Liang, L. Delian, C. Xian, Y. Li, Z. Yuqing, Applied Surface Science.

Google Scholar

[30] A. M. M. Omer, S. Adhikari, S. Adhikary, M. Rusop, H. Uchida, M. Umeno, T. Soga, Physica B: Condensed Matter 316 (2006) 376.

DOI: 10.1016/j.physb.2005.12.081

Google Scholar

[31] S. Prawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal, R. Kalish, Diamond and Related Materials 5 (1996) 433.

DOI: 10.1016/0925-9635(95)00363-0

Google Scholar

[32] S. A. Mohd Zobir, S. Abu Bakar, S. Abdullah, Z. Zainal, S. H. Sarijo, M. Rusop, Journal of Nanomaterials, 2012.

DOI: 10.1155/2012/451473

Google Scholar

[33] S. Kamikura, T. Uchida, K. Naka, T. Asaji, H. Uchiyama, Y. Yoshida, Diamond and Related Materials, 20 (2010) 863.

DOI: 10.1016/j.diamond.2011.04.007

Google Scholar

[34] Suriani Abu Bakar, Salina Muhamad, Puteri Sarah Mohamad Saad Defect and Diffusion Forumsv312 (2011) 900.

Google Scholar