Effect of Substrate Temperature on Structural and Optical Properties of ZnO:Co Thin Films Fabricated by Laser Molecular Beam Epitaxy

Article Preview

Abstract:

We synthesized ZnO:Co thin films on sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) method. X-ray diffraction (XRD) spectra indicated that all samples possessed wurtzite structure with the preferential c-axis-orientation and the value of the c-axis lattice decreased with increasing substrate temperature. UVvis transmittance spectra and X-ray photoelectron spectroscopy (XPS) implied that Co2+ ions incorporated into ZnO lattice with substitution for Zn2+ ions and the non-bivalent Zn existed in as-prepared thin films. Two emission bands located at 418 nm (2.97 eV) and 490 nm (2.53 eV) were observed from the photoluminescence (PL) spectra of all samples. The two emission bands were in relation to Zn interstitials and the complex of VO and Zni (VOZni). The quantity of the Zn interstitials remained mostly invariable as substrate temperature increased.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 834-836)

Pages:

64-69

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ohno: Science vol. 281 (1998)p.951.

Google Scholar

[2] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Guillen, B. Johansson, G. A. Gehring: Nat Mater vol. 2 (2003), p.673.

Google Scholar

[3] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang: Science vol. 292 (2001), p.1897.

DOI: 10.1126/science.1060367

Google Scholar

[4] Y. W. Heoa, D. P. Nortona, L. C. Tiena, Y. Kwona, B. S. Kangb, F. Renb, S. J. Peartona, J. R. LaRoche: Materials Science and Engineering vol. 47 (2004), p.1.

Google Scholar

[5] T. Dietl, H. Ohno, F. Matsukuraf: Phys. Rev. B vol. 63 (2001), p.195205.

Google Scholar

[6] K. Sato, H. Katayama-Yoshida: Physica B: Condensed Matter vol. 308-310 (2001), p.904.

Google Scholar

[7] K. Sato, H. Katayama-Yoshida: physica status solidi (b) vol. 229 (2002), p.673.

Google Scholar

[8] S. -J. Han, J. W. Song, C. -H. Yang, S. H. Park, J. -H. Park, Y. H. Jeong, K. W. Rhie,: Appl. Phys. Lett. vol. 81 (2002), p.4212.

Google Scholar

[9] Y. M. Cho, W. K. Choo, H. Kim, D. Kim, Y. Ihm: Appl. Phys. Lett. vol. 80 (2002), 3358.

Google Scholar

[10] X. M. Cheng, C. L. Chien: J. Appl. Phys. vol. 93 (2003), p.7876.

Google Scholar

[11] C. Liu, F. Yun, B. Xiao, S. -J. Cho, Y. T. Moon, H. Morkoç, M. Abouzaid, R. Ruterana, K. M. Yu, W. Walukiewicz: J. Appl. Phys. vol. 97 (2005), p.126107.

DOI: 10.1063/1.1941465

Google Scholar

[12] Z. -B. Gu, C. -S. Yuan, M. -H. Lu, J. Wang, D. Wu, S. -T. Zhang, S. -N. Zhu, Y. -Y. Zhu, Y. -F. Chen: J. Appl. Phys. vol. 98 (2005), p.053908.

Google Scholar

[13] H. -J. Lee, S. -Y. Jeong, C. R. Cho, C. H. Park: Appl. Phys. Lett. vol. 81 (2002), p.4020.

Google Scholar

[14] J. H. Park, M. G. Kim, H. M. Jang, S. Ryu, Y. M. Kim: Appl. Phys. Lett. vol. 84 (2004), p.1338.

Google Scholar

[15] A. B. Pakhomov, B. K. Roberts, A. Tuan, V. Shutthanandan, D. McCready, S. Thevuthasan, S. A. Chambers, K. M. Krishnan: J. Appl. Phys. vol. 95 (2004), p.7393.

DOI: 10.1063/1.1669224

Google Scholar

[16] A. C. Tuan, J. D. Bryan, A. B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D. E. McCready, D. E. Gaspar, M. H., J. W. Rogers, Jr., K. Krishnan, D. R. Gamelin, S. A. Chambers: Phys. Rev. B vol. 70 (2004), p.054424.

Google Scholar

[17] K. Ueda, H. Tabata, T. Kawai: Appl. Phys. Lett. vol. 79 (2001), p.988.

Google Scholar

[18] Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma: Appl. Phys. Lett. vol. 78 (2001), p.3824.

DOI: 10.1063/1.1377856

Google Scholar

[19] S. W. Jung, S. -J. An, G. -C. Yi, C. U. Jung, S. -I. : Appl. Phys. Lett. vol. 80 (2002), p.4561.

Google Scholar

[20] A. C. Mofor, A. El-Shaer, A. Bakin, A. Waag, H. Ahlers, U. Siegner, S. Sievers, M. Albrecht, W. Schoch, N. Izyumskaya, V. Avrutin, S. Sorokin, S. Ivanov, J. Stoimenos: Appl. Phys. Lett. vol. 87 (2005), p.062501.

DOI: 10.1063/1.2007864

Google Scholar

[21] W. T. Lim, K. R. Cho, C. H. Lee: Thin Solid Films vol. 348 (1999), p.56.

Google Scholar

[22] M.K. Patra, K. Manzoor, M. Manoth, S.R. Vadera: J Phys Chem Solids vol. 70 (2009), p.659.

Google Scholar

[23] M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, S. I. Shah: Nanotechnology vol. 17 (2006), p.2675.

Google Scholar

[24] M. Naeem, SKHasanain, S. S. Afgan: J. Phys.: Condens. Matter vol. 20 (2008), p.255.

Google Scholar

[25] C. Wang, Z. Chen, H. Hu, D. Zhang: Physica B vol. 404 (2009), p.4075.

Google Scholar

[26] X. Q. Wei, J. Z. Huang, M. Y. Zhang, Y. Dua: Materials Science and Engineering B vol. 166 (2010), p.141.

Google Scholar

[27] H. X. Chen, J. J. Ding, X. G. Zhao, S. Y. Ma: Physica B vol. 405 (2010), p.1339.

Google Scholar

[28] J. J. Ding, S. Y. Ma, H. X. Chen, X. F. Shi, T. T. Zhou: Physica B vol. 404 (2009), p.2439.

Google Scholar

[29] H. Wei, Y. Wu, L. wu, C. Hu: Mater. Lett. vol. 59 (2005), p.271.

Google Scholar

[30] L. J. Li, H. Deng, L. P. Dai, J. J. Chen, Q. L. Yuan: Mater. Res. Bull. vol. 43 (2008), p.1456.

Google Scholar

[31] U. Pal, J. G. Serrano, N. Koshizaki: Materials Scienceand Engineering vol. 118 (2004), p.24.

Google Scholar

[32] P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan: Nucl. Instrum. Methods Phys. Res. B vol. 199 (2003), p.286.

Google Scholar