Effect of Deposition Pressure on the Properties of Silicon Thin Films

Article Preview

Abstract:

Hydrogenated silicon thin film was prepared by plasma enhanced chemical vapor deposition (PECVD). The effects of the deposition pressure on the growth rate, the photoelectronic and microstructure properties of the thin films were investigated via transmission, photo/dark conductivity, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) measurements. The results indicate that the increase of the deposition pressure increases the bandgap and the growth rate, while makes the photosensitivity get worse, decreasing from more than ~103 to ~102. And at the same time, the crystalline volume fraction (Xc) in the film decreases from 70% to 61%, when the deposition pressure increases from 100 Pa to 500 Pa. The order degree of the microstructure was deteriorated with pressure increasing.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 834-836)

Pages:

70-73

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Meier, R. Fluckiger, H. Keppner, and A. Shah: Appl. Phys. Lett. Vol. 65 (1994), p.860.

Google Scholar

[2] A.H. Mahan, J. Carapella, B.P. Nelson, R. Crandall, and I. Balberg: J. Appl. Phys. Vol. 69 (1991), p.6728.

Google Scholar

[3] V.S. Waman, M.M. Kamble, M.R. Pramod, S.P. Gore, A.M. Funde, R.R. Aawaldar, D.P. Amalnerkarb, V.G. Sathe, S.W. Gosavi, and S.R. Jadkar: J. Non-Cryst. Solids. Vol. 357 (2011), p.3616.

DOI: 10.1016/j.jnoncrysol.2011.07.002

Google Scholar

[4] H.Y. Hao, X.B. Liao, X.B. Zeng, H.W. Diao, Y. Xu, and G.L. Kong: J. Cryst. Growth. Vol. 281 (2005), p.344.

Google Scholar

[5] J. Tauc, R. Grigorovici, and A. Vancu: Phys. Status Solidi B Vol. 15 (1966), p.627.

Google Scholar

[6] J. Tauc, R. Grigorovici, and A. Vancu: Mat Res Bull Vol. 3 (1968), p.37.

Google Scholar

[7] Y.Q. Xu, B.P. Nelson, L.M. Gedvilas, and R.C. Reedy: Thin Solid Films Vol. 430(2003), p.4197.

Google Scholar

[8] Z.Z. You, G.J. Hua: Vacuum Vol. 83(2009), p.984.

Google Scholar

[9] D. Raha, D. Das: Appl. Surf. Sci Vol. 276(2013), p.249.

Google Scholar

[10] G.Y. Xu, T.M. Wang, G.H. Li, J.L. Wang, Y.L. He, Z.X. Ma, and G.Z. Zheng: Chin. J. Semicond. Vol. 21 (2000), p.1170.

Google Scholar

[11] H. Richter, Z.P. Wang, and L. Ley: Solid State Commun. Vol. 39 (1981), p.625.

Google Scholar

[12] A. Chowdhury, S. Mukhopadhyay, and S. Ray: J. Cryst. Growth Vol. 304 (2007), p.352.

Google Scholar

[13] J. D. Ouwens, and R.E.I. Schropp: Phys. Rev. B. Vol. 1 54 (1996), p.17759.

Google Scholar

[14] A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford, adn N. Maley: Phys. Rev. B. Vol. 45 (1992), p.13367.

Google Scholar

[15] J.C. Knights, J. Non-Cryst. Solids Vol. 35–36 (1980), p.159.

Google Scholar

[16] L. Zhao, B. D. Zhao, B.J. Yan, H.W. Diao, Y.L. Mao, and W.J. Wang: Mat. Sci. Semicon. Proc. Vol. 16, (2013), p.363.

Google Scholar