[1]
J. -J. Yang, L. -C. Lin, K. -H. Chao, S. -Y. Chuang, C. -C. Wu, T. -T. Yeh, and Y. -T. Lian, Risk Factors for Nonunion in Patients with Intracapsular Femoral Neck Fractures Treated with Thre Cannulated Screws Placed in Either a Triangle or an Inverted Triangle Configuration, Journal of Bone & Joint Surgery, vol. 95-A, pp.61-69, (2013).
DOI: 10.2106/jbjs.k.01081
Google Scholar
[2]
T. -W. Huang, W. -H. Hsu, K. -T. Peng, and C. -Y. Lee, Effect of integrity of the posterior cortex in displaced femoral neck fractures on outcome after surgical fixation in young adults, Injury, vol. 42, pp.217-222, (2011).
DOI: 10.1016/j.injury.2010.10.005
Google Scholar
[3]
J. W. Oakey, M. D. Stover, H. D. Summers, M. Sartori, R. M. Havey, and A. G. Patwardhan, Does screw configuration affect subtrochanteric fracture after femoral neck fixation?, Clinical Orthopaedics and Related Research, pp.302-306, (2006).
DOI: 10.1097/01.blo.0000188557.65387.fc
Google Scholar
[4]
E. Walker, D. P. Mukherjee, A. L. Ogden, K. K. Sadasivan, and J. A. Albright, A Biomechanical Study of Simulated Femoral Neck Fracture Fixation by Cannulated Screws: Effects of Placement Angle and Number of screws, The America Journal of Orthopedic, vol. 36, pp.680-684, (2007).
Google Scholar
[5]
O. Filipov, Biplane double-supported screw fixation (F-technique): a method of screw fixation at osteoporotic fractures of the femoral neck, European Journal of Orthopaedic Surgery & Traumatology, vol. 21, pp.539-543, 2011/10/01 (2011).
DOI: 10.1007/s00590-010-0747-9
Google Scholar
[6]
C. A. Bout, D. M. Cannegieter, and J. W. Juttmann, Percutaneous cannulated screw fixation of femoral neck fractures: the three point principle, Injury, vol. 28, pp.135-139, (1997).
DOI: 10.1016/s0020-1383(96)00161-1
Google Scholar
[7]
M. R. b. A. Kadir, Interface Micromotion in Cementless Hip Protheses, Doctor of Philosophy, Biomechanic Imperial College London, Imperial College London, (2005).
Google Scholar
[8]
W. -P. Chen, C. -L. Tai, C. -H. Shih, P. -H. Hsieh, M. -C. Leou, and M. S. Lee, Selection of fixation devices in proximal femur rotational osteotomy: clinical complications and finite element analysis, Clinical Biomechanics, vol. 19, pp.255-262, (2004).
DOI: 10.1016/j.clinbiomech.2003.12.003
Google Scholar
[9]
P. J. Nowotarski, B. Ervin, B. Weatherby, J. Pettit, R. Goulet, and B. Norris, Biomechanical analysis of a novel femoral neck locking plate for treatment of vertical shear Pauwel's type C femoral neck fractures, Injury, vol. 43, pp.802-806, (2012).
DOI: 10.1016/j.injury.2011.09.012
Google Scholar
[10]
T. V. Ly and M. F. Swiontkowski, Treatment of Femoral Neck Fractures in Young Adults, Journal of Bone & Joint Surgery, vol. 90-A, pp.2254-266, (2008).
Google Scholar
[11]
R. Mittal and S. Banerjee, Proximal femoral fractures: Principles of management and review of literature, Journal of Clinical Orthopaedics and Trauma, vol. 3, pp.15-23, (2012).
DOI: 10.1016/j.jcot.2012.04.001
Google Scholar
[12]
M. J. Parker and S. M. Ali, Short versus long thread cannulated cancellous screws for intracapsular hip fractures: A randomised trial of 432 patients, Injury, vol. 41, pp.382-384, (2010).
DOI: 10.1016/j.injury.2009.10.008
Google Scholar
[13]
S. M. Ali, S. Haleem, and M. J. Parker, Short- versus long-thread cannulated screws for intracapsular hip fractures: A randomised trial of 432 patients, Injury Extra, vol. 39, p.202, (2008).
DOI: 10.1016/j.injury.2007.11.405
Google Scholar
[14]
S. Sowmianarayanan, A. Chandrasekaran, and R. K. Kumar, Finite element analysis of a subtrochanteric fractured femur with dynamic hip screw, dynamic condylar screw, and proximal femur nail implants-a comparative study, Proc Inst Mech Eng H, vol. 222, pp.117-27, Jan (2008).
DOI: 10.1243/09544119jeim156
Google Scholar
[15]
V. Tan, K. L. Wong, C. T. Born, R. Harten, and W. G. DeLong, Two-Screw Femoral Neck Fracture Fixation: A Biomechanical Analysis of 2 Different Configuration, The America Journal of Orthopedic, vol. 36, pp.481-485, (2007).
Google Scholar