Characterizations of Physical Properties of Sn-Bi Solder Alloy

Article Preview

Abstract:

As the electronic packaging industry is vastly being developed, the solder plays a crucial role in providing integrity electronic assemblies. Unfortunately, the traditional Sn-Pb solder is harmful to the environment and human due to lead (Pb) it contains. Hence, in this study, the Sn-Bi lead free solder alloy is investigated based on its physical properties together with melting temperature, hardness and microstructure. Investigation shows that this solder provides a low melting temperature of, Tm=141.08°C which is lower than the most used Sn-Pb, Tm=183°C and Sn-Ag-Cu, Tm=227°C. Moreover, the Sn-Bi solder also produces well-defined microstructures with Sn-matrix and bismuth precipitation on the matrix. The Sn-Bi solder also provides a higher hardness with average of 11.8Hv for Vickers hardness and 3.87BHN for Brinell hardness. All this results seem to satisfies the environment as well as producing better physical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-265

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Abtew, G. Selvaduray. Materials Science and Engineering 27 (2000) Pp. 19-141.

Google Scholar

[2] Giles Humpston, David M. Jacobson. Materials Park Ohio 44073-0002 Pp. 1-47.

Google Scholar

[3] Ning Cheng Lee. Copyright © 2002 by Newnes, an imprint of Butterworth-Heinemann.

Google Scholar

[4] Yulai Gao, Changdong Zou, Bin Yang, Qijie Zhai, Johan Liub, Evgeny Zhuravlev, Christoph Schick. Journal of Alloys and Compounds 484 (2009) Pp. 777–781.

DOI: 10.1109/estc.2008.4684474

Google Scholar

[5] Ramani Mayappan, Ahmad Badri Ismail, Zainal Arifin Ahmad, Tadashi Ariga, Luay Bakir Hussain. Materials Letters 60 (2006) Pp. 2383-2389.

DOI: 10.1016/j.matlet.2006.01.024

Google Scholar

[6] Hongtao Chen, Chunqing Wang, Mingyu Lie and Dewen Tian. J. Mater. Sci. Technol., Vol. 23 No. 1, (2007).

Google Scholar

[7] Lu Shen, Pradita Septiwerdani, Zhong Chen. Materials Science & Engineering A558 (2012) Pp. 253–258.

Google Scholar

[8] L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Huang. Materials and Design 31 (2010) Pp. 4831–4835.

Google Scholar

[9] Mansur Ahmed, Tama Fouzder, A. Sharif, Asit Kumar Gain, Y.C. Chan. Microelectronics Reliability 50 (2010) Pp. 1134–1141.

DOI: 10.1016/j.microrel.2010.03.017

Google Scholar

[10] E.M.N. Ervina, A. Singh. 35th International Electronics Manufacturing Technology 2012 P059.

Google Scholar

[11] Liang Zhanga, Cheng-wen Hea, Yong-huan Guoa, Ji-guang Hana, Yong-wei Zhanga, Xu-yan Wang. Microelectronics Reliability, Volume 52, Issue 3, March 2012, P. pp.559-578.

Google Scholar

[12] A.A. El-Daly, A.E. Hammad. Journal of Alloys and Compounds 505 (2010) Pp. 793–800.

Google Scholar

[13] Lili Gao, Songbai Xue, Liang Zhang, Zhong Sheng, Feng Ji, Wei Dai, Sheng-lin Yu, Guang Zeng. Microelectronic Engineering 87 (2010) Pp. 2025-(2034).

DOI: 10.1016/j.mee.2010.04.007

Google Scholar

[14] C.L. Chuang, L.C. Tsao, H.K. Lin, L.P. Feng. Materials Science & Engineering A558 (2012) Pp. 478–484.

Google Scholar

[15] Ervina Efzan Mhd Noor, Amares Singh, Yap Tze Chuan (2013). Soldering & Surface Mount Technology, Vol. 25 Iss: 4.

DOI: 10.1108/ssmt-11-2012-0026

Google Scholar

[16] Katsuaki Sugunama, Marcel Dekker, 2004, ISBN 0824741021, 9780824741020 University Osaka, Japan.

Google Scholar

[17] C. Morando, O. Fornaro, O. Garbellini and H. Palacio. Procedia Materials Science 1 (2012) Pp. 80-86.

Google Scholar

[18] S. Wiese, K.J. Wolter. Microelectronics Reliability 44 (2004) Pp. 1923–(1931).

Google Scholar

[19] J. W. Morris Jr. Sc.D., J. L. Freer Goldstein M.S., Z. Mei Ph.D. JOM July 1993, Vol. 45, Iss. 7, Pp. 25-27 ISSN: 1047-4838-1543-1851.

DOI: 10.1007/bf03222376

Google Scholar

[20] H.F. Zou, Q.K. Zhang, Z.F. Zhang. Mater Science and Engineering A 532 (2012) Pp. 167– 177.

Google Scholar

[21] Dr. Oğuzhan Yılmaz. Engineering Materials. Chapter 5 Hardness and Hardness Testing.

Google Scholar

[22] Kannachai Kanlayasiri, Mongkol Mongkolwongrojn, Tadashi Ariga. Journals of Alloys and Compounds 485 (2009) Pp. 225-230.

Google Scholar

[23] J. Chriaˇstel'ov´a, M. Oˇzvold. Journal of Alloys and Compounds 457 (2008) Pp. 323–328.

Google Scholar

[24] Zequn Mei, Helen A. Holder, and Hubert A. Vander Plas. Low-Temperature Solders. August (1996) Hewlett-Packard Journal.

Google Scholar

[25] P. Lobry, L. Błaż, M. Sugamata, A. Kula. Int Scientific Journal. Vol. 49 Iss. 2 June (2011).

Google Scholar

[26] M.N. Ervina Efzan, H. Zuhailawati, A.B. Ismail, N. M. Sharif. Materials Science & Technology 2009 Conference and Exhibition (MS&T Partner Societies) Oct (2009).

Google Scholar

[27] Paul V. Bolotoff, Copyright©Alasir EnterprisesApril (2010).

Google Scholar

[28] Peter Biocca. Tin-copper based solder options for lead-free assembly. Global SMT & Packaging - November/December (2006).

Google Scholar

[29] Frank C. Pendzich . Basic Soldering. © July (2002).

Google Scholar

[30] A.R. Geranmayeha, G. Nayyerib, R. Mahmudi. Materials Science and Engineering A 547 (2012) Pp. 110– 119.

Google Scholar

[31] Hui-Wei Miao, Jenq-Gong Duh. Materials Chemistry and Physics 71 (2001) Pp. 255–271.

Google Scholar

[32] P.L. Liu and J.K. Shang. Scripta mater. 44 (2001) Pp. 1019–1023.

Google Scholar

[33] R.M. Shalaby. Materials Science & Engineering A 560 (2013) Pp. 86–95.

Google Scholar

[34] Laurila, Tomi & Vuorinen, Vesa / (2010, April 13). SciTopics. Retrieved April 16, (2012).

Google Scholar

[35] R. Mayappan, Z.A. Ahmad. Intermetallics 18 (2010) Pp. 730–735.

Google Scholar

[36] Li Guo-yuan, Shi Xun-qing. Trans. Nonferrous Met. SOC. China 16 (2006) Pp. 739-743.

Google Scholar

[37] Harry Chandler. Copyright © 1999 ASM International Hardness Testing, 2nd Edition.

Google Scholar

[38] Gordon England. Independent Metallurgist and Consultant. Information www. gordonengland. co. uk.

Google Scholar