[1]
T. S. Kaneko, et al., Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases, Journal of Biomechanics, vol. 37, pp.523-530, (2004).
DOI: 10.1016/j.jbiomech.2003.08.010
Google Scholar
[2]
S. Majumdar, et al., High-Resolution Magnetic Resonance Imaging: Three-Dimensional Trabecular Bone Architecture and Biomechanical Properties, Bone, vol. 22, pp.445-454, (1998).
DOI: 10.1016/s8756-3282(98)00030-1
Google Scholar
[3]
X. T. Shi, et al., Effects of Loading Orientation on the Morphology of the Predicted Yielded Regions in Trabecular Bone, Annals of Biomedical Engineering, vol. 37, pp.354-362, (2009).
DOI: 10.1007/s10439-008-9619-4
Google Scholar
[4]
S. Faegh and S. Müftü, Load transfer along the bone–dental implant interface, Journal of biomechanics, vol. 43, pp.1761-1770, (2010).
DOI: 10.1016/j.jbiomech.2010.02.017
Google Scholar
[5]
S. Saidin, et al., Effects of different implant–abutment connections on micromotion and stress distribution: Prediction of microgap formation, Journal of Dentistry, vol. 40, pp.467-474, (2012).
DOI: 10.1016/j.jdent.2012.02.009
Google Scholar
[6]
T. H. Smit, et al., Structure and function of vertebral trabecular bone, Spine, vol. 22, pp.2823-2833, (1997).
DOI: 10.1097/00007632-199712150-00005
Google Scholar
[7]
K. S. Jensen, et al., A model of vertebral trabecular bone architecture and its mechanical properties, Bone, vol. 11, pp.417-423, (1990).
DOI: 10.1016/8756-3282(90)90137-n
Google Scholar
[8]
X. Liu, et al., Effects of damage on the orthotropic material symmetry of bovine tibial trabecular bone, Journal of Biomechanics, vol. 36, pp.1753-1759, (2003).
DOI: 10.1016/s0021-9290(03)00217-3
Google Scholar
[9]
H. Chung, et al., Relationship between NMR transverse relaxation, trabecular bone architecture, and strength, Proc Natl Acad Sci U S A, vol. 90, pp.10250-4, (1993).
DOI: 10.1073/pnas.90.21.10250
Google Scholar
[10]
R. M. A. Raja Izaham, et al., Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy, Injury, vol. 43, pp.898-902, (2012).
DOI: 10.1016/j.injury.2011.12.006
Google Scholar
[11]
M. Abdul Kadir, et al., Interface Micromotion of Cementless Hip Arthroplasty: Collared vs Non-collared Stems, in 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. vol. 21, N. Abu Osman, et al., Eds., ed: Springer Berlin Heidelberg, 2008, pp.428-432.
DOI: 10.1007/978-3-540-69139-6_109
Google Scholar
[12]
M. Kadir, et al., Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone, Medical & Biological Engineering & Computing, vol. 48, pp.497-505, (2010).
DOI: 10.1007/s11517-010-0593-2
Google Scholar
[13]
L. Mosekilde, Sex differences in age-related loss of vertebral trabecular bone mass and structure biomechanical consequences, Bone (New York), vol. 10, pp.425-432, (1989).
DOI: 10.1016/8756-3282(89)90074-4
Google Scholar
[14]
G. Fang, et al., Quantification of trabecular bone microdamage using the virtual internal bond model and the individual trabeculae segmentation technique, Comput Methods Biomech Biomed Engin, vol. 13, pp.605-15, (2010).
DOI: 10.1080/10255840903405660
Google Scholar
[15]
K. Birnbaum, et al., Material properties of trabecular bone structures, Surgical and Radiologic Anatomy, vol. 23, pp.399-407, (2001).
Google Scholar
[16]
M. Doube, et al., BoneJ: Free and extensible bone image analysis in ImageJ, Bone, vol. 47, pp.1076-1079, (2010).
DOI: 10.1016/j.bone.2010.08.023
Google Scholar
[17]
A. Syahrom, et al., Mechanical and microarchitectural analyses of cancellous bone through experiment and computer simulation, Medical & Biological Engineering & Computing, vol. 49, pp.1393-1403, (2011).
DOI: 10.1007/s11517-011-0833-0
Google Scholar
[18]
B. van Rietbergen, et al., A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models, Journal of Biomechanics, vol. 28, pp.69-81, (1995).
DOI: 10.1016/0021-9290(95)80008-5
Google Scholar
[19]
E. F. Morgan and T. M. Keaveny, Dependence of yield strain of human trabecular bone on anatomic site, Journal of Biomechanics, vol. 34, pp.569-577, (2001).
DOI: 10.1016/s0021-9290(01)00011-2
Google Scholar
[20]
D. Kumar, et al., Knee joint loading during gait in healthy controls and individuals with knee osteoarthritis, Osteoarthritis and Cartilage, vol. 21, pp.298-305, (2013).
DOI: 10.1016/j.joca.2012.11.008
Google Scholar
[21]
C. H. Turner, Yield behavior of bovine cancellous bone, Journal of Biomechanical Engineering, vol. 111, pp.256-260, (1989).
DOI: 10.1115/1.3168375
Google Scholar
[22]
X. S. Liu, et al., Dynamic simulation of three dimensional architectural and mechanical alterations in human trabecular bone during menopause, Bone, vol. 43, pp.292-301, (2008).
DOI: 10.1016/j.bone.2008.04.008
Google Scholar