Maerogel: Alternative for Thermal Barrier Coating Topcoat

Article Preview

Abstract:

Thermal barrier coating (TBC) system has been developed for high temperature applications along with the used of yttria stabilized zirconia (YSZ) as topcoat. Recently, developing coating material made from nanoparticles is widely explored. Thus, maerogel could become a potential candidate for this purpose because it consists of nano porous particle with low in density and low in thermal conductivity. The coating is expected to improve the formation of thermally grown oxide (TGO), thermal stability and increase the insulating capability. However, maerogel need agglomeration process before coating can be made because of it has low mass and high specific area.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-334

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Hamdan, M. Nazlan, M. Muhid, S. Endud, and E. Listiorini, Si MAS NMR , XRD and FESEM Studies of Rice Husk Silica for The Synthesis of Zeolites, J Non-Cryst Solids, 211 (1997) 126–131.

DOI: 10.1016/s0022-3093(96)00611-4

Google Scholar

[2] V. P. Della, I. Kühn, and D. Hotza, Rice Husk Ash as an Alternate Source for Active Silica Production, Mater Lett, 57 (2002) 818–821.

DOI: 10.1016/s0167-577x(02)00879-0

Google Scholar

[3] S. Chandrasekhar, K. G. Satyanarayana, P. N. Pramada, and R. P, Processing, Properties and Applications of Reactive Silica from Rice Husk - An Overview, J Mater Sci, 38 (2003) 3159–3168.

DOI: 10.1002/chin.200406243

Google Scholar

[4] J. L. Gurav, I. -K. Jung, H. -H. Park, E. S. Kang, and D. Y. Nadargi, Silica Aerogel: Synthesis and Applications, J Nano Mater, 2010 (2010) 1–11.

DOI: 10.1155/2010/409310

Google Scholar

[5] H. Hamdan, U. S Patent 7, 897, 648 B2. (2011).

Google Scholar

[6] A. Soleimani Dorcheh and M. Abbasi, Silica aerogel; synthesis, properties and characterization, J Mater Process Tech, 199 (2008) 10–26.

DOI: 10.1016/j.jmatprotec.2007.10.060

Google Scholar

[7] A. Berge and P. Ä. R. Johansson, Literature Review of High Performance Thermal Insulation, (2012) 1–40.

Google Scholar

[8] C. a. García-González, M. C. Camino-Rey, M. Alnaief, C. Zetzl, and I. Smirnova, Supercritical Drying of Aerogels Using CO2: Effect of Extraction Time on The End Material Textural Properties, J Supercrit Fluid, 66 (2012) 297–306.

DOI: 10.1016/j.supflu.2012.02.026

Google Scholar

[9] A. C. Pierre and A. Rigacci, SiO2 Aerogels, in: M. A. Aegerter, N. Leventis, and M. M. Koebel (Eds. ), Aerogels Handbook, Springer., New York, 2011, p.21–46.

DOI: 10.1007/978-1-4419-7589-8_2

Google Scholar

[10] R. S. Lima and B. R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J Therm Spray Techn, 16 (2007) 40–63.

DOI: 10.1007/s11666-006-9010-7

Google Scholar

[11] K. E. Schneider, V. Belashchenko, M. Dratwinski, S. Siegmann, and A. Zagorski, Thermal Spraying for Power Generation Components. Wiley-VCH, (2006).

DOI: 10.1002/3527609342

Google Scholar

[12] R. S. Lima and B. R. Marple, Superior Performance of High-Velocity Oxyfuel-Sprayed Nanostructured TiO2in Comparison to Air Plasma-Sprayed Conventional Al2O3-13TiO2, J Therm Spray Techn, 14 (2005) 397–404.

DOI: 10.1361/105996305x59413

Google Scholar

[13] S. Mishra, K. Rout, P. V. Padmanabhan, and B. Mills, Plasma spray coating of fly ash pre-mixed with aluminium powder deposited on metal substrates, J Mater Process Tech, 102 (2000) 9–13.

DOI: 10.1016/s0924-0136(99)00443-4

Google Scholar

[14] R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, Overview on advanced thermal barrier coatings, Surf Coat Tech, 205 (2010) 938–942.

DOI: 10.1016/j.surfcoat.2010.08.151

Google Scholar

[15] H. M. Tawancy, N. Sridhar, and N. M. Abbas, Comparative performance of selected bond coats in advanced thermal barrier coating systems, J Mater Sci, 5 (2000) 615–3629.

Google Scholar