Growth Process of Periphytic Biofilm under Defined Local Hydrodynamic Conditions

Article Preview

Abstract:

Flume experiments were conducted to assess the impact of defined local hydrodynamic conditions on the growth process of periphytic biofilm. Biofilms were developed in four different local hydrodynamics with friction velocities of 0.0027, 0.0064, 0.0117 and 0.0172 m/s respectively over a 36-day period. The initial colonization of microbial community was significantly delayed by high flow velocities. The dry mass, bacterial abundance and total EPS content of biofilms reached their maximal values at a critical friction velocity of 0.0064 m/s, as a result of the conflicting effects of mass transport and shear stress from local flow fluid. The results indicated that local hydrodynamics during periphytic biofilm growth conditioned the structure and composition of biofilms.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 850-851)

Pages:

1229-1233

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. J. Cardinale: Nature, Vol. 472 (2011), pp.86-89.

Google Scholar

[2] L. Hall-Stoodley and P. Stoodley: Current Opinion in Biotechnology, Vol. 13 (2002), pp.228-233.

DOI: 10.1016/s0958-1669(02)00318-x

Google Scholar

[3] K. Besemer, G. Singer, I. Hodl and T. J. Battin: Applied and environmental Microbiology, Vol. 75 (2009), pp.7189-7195.

Google Scholar

[4] Z. Huang, E. S. McLamore, H. S. Chuang, W. Zhang, S. Wereley, J. L. C. Leon and M.K. Banks: Biotechnology and Bioengineering, Vol. 110 (2013), pp.525-534.

DOI: 10.1002/bit.24631

Google Scholar

[5] S. Boulêtreau, O. Izagirre, F. Garabetian, S. Sauvage, A. Elosegi and J. M. Sánchez-Pérez: River research and applications, Vol. 24 (2008), pp.36-53.

DOI: 10.1002/rra.1046

Google Scholar

[6] M. Graba, S. Sauvage, F. Y. Moulin, G. Urrea, S. Sabater and J. M. Sanchez-Pérez: Water Research, Vol. 47 (2013), P. 2153-2163.

DOI: 10.1016/j.watres.2013.01.011

Google Scholar

[7] N. Flipo, S. Even, M. Poulin, M. H. Tusseau-Vuillemin, T. Ameziane and A. Dauta: Ecological Modelling, Vol. 176 (2004), P. 333-347.

DOI: 10.1016/j.ecolmodel.2004.01.012

Google Scholar

[8] N. Derlon, A. Massé, R. Escudié, N. Bernet and E. Paul: Water research, Vol. 42 (2008), pp.2102-2110.

DOI: 10.1016/j.watres.2007.11.016

Google Scholar

[9] APHA-AWWA-WEF: Standard Methods for Examination of Water and Wastewater, 20th ed. (APHA, AWWA, and WEF, Washington, DC, 1998).

Google Scholar

[10] T. Li, R. Bai and J. Liu: Journal of biotechnology, Vol. 135 (2008), pp.52-57.

Google Scholar

[11] K. Raunkjaer, T. Hvitved-Jacobsen and P. H. Nielsen: Water research, Vol. 28 (1994), pp.251-262.

Google Scholar

[12] H. C. Flemming and J. Wingender: Nature Reviews Microbiology, Vol. 8(2010), pp.623-633.

Google Scholar