The Research on the Synthesis and Bioactivity of Carbonate Hydroxyapatites

Article Preview

Abstract:

The composition and structure of carbonated hydroxyapatite (CHA) are much closer to those of inorganic minerals in natural bones. A series of experiments have been conducted to investigate the following aspects: (1) the mechanism of CHA synthesis by precipitation approach; (2) the biocompatibility and stability of CHA coatings. The results showed that an even single phase CHA crystals could be developed from Ca (NO)3-(NH4)2HPO4-NaHCO3-NH4OH system. Lastly, the surface of Ti-based CHA/UHMWPE coatings (2μm) was uniform and continuous with average bond strength of 32 MPa. 60 days after implanting the coatings into animals, the surface of the implanted material was totally covered by newly grown bone tissues whose structure was of no significant difference with normal bones, without changing coatings bond strength greatly. The result of the present work implied CHA coatings have excellent bioactivity and stability.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 850-851)

Pages:

1225-1228

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.R. Simpson: Clin. Orthop. Vol. 260 (1972), p.86.

Google Scholar

[2] J.C. Elliott: Clin. Orthop. Vol. 93(1973), p.313.

Google Scholar

[3] B.R. Constanz, I.C. Ison, M.T. Fulmer, R.D. Poser, S.T. Smith, M. Van Wagoner, J. Ross, S.A. Goldstein, J.B. Jupiter and D.I. Rosenthal: Science. Vol. 265(1995). p.1796.

Google Scholar

[4] R. Tang, M. Hass, W. Wu, S. Gulde, G.H. Nancollas and J. Colloid: Interface Sci. Vol. 60(2003). p.373.

Google Scholar

[5] I. Rehman and W. Bonfield: J. Mater. Sci. Mater. Med. Vol. 8(1997). p.1.

Google Scholar

[6] G. Celotti, E. Landi, M. Sandri and A. Tamieri. Key Eng. Mater. Vol. 26(2004). p. (2071).

Google Scholar

[7] E. Laudi and A. Tampieri: Biomater. Vol. 25(2004). p.1763.

Google Scholar

[8] A.H. Rajabi-Zamani, A. Behnamghader and A. Kazemzadeh: Mater. Sci. Eng. C. Vol. 28(2008). p.1326.

Google Scholar

[9] G. Xu, I. A. Aksay and J. T. Groves: J. Am. Cliem. Soc. Vol. 123(2001). p.2796.

Google Scholar

[10] D. Lakstein, W. Kopelovitch, Z. Barkay, M. Bahaa, D. Hendel and N. Eliaz: Acta Biomater. Vol. 5(2009). p.2258.

DOI: 10.1016/j.actbio.2009.01.033

Google Scholar

[11] G. Yang, F. He, J. Hu, X. Wang and S. Zhao: J. Oral Maxil. Surg. Vol. 68(2010). p.420.

Google Scholar

[12] A. Letic-Gavrilovic, A. Piattelli and K. Abe: J. Mater. Sci: Mater. Med. Vol. 14(2003). p.95.

Google Scholar

[13] L. Fang, P. Gao and Y. Leng, Compos. B: Eng. Vol. 38(2007). p.345.

Google Scholar

[14] D.J. Krzypow, and M. Timnacc, Biomaterials, Vol. 21(2002). p. (2081).

Google Scholar

[15] G.Q. Wang and L. P. Niu, Adv. Mater. Res. Vol. 391-392(2012). p.625.

Google Scholar

[16] T. Li, J. Lee, T. Kobayashi and H. Aoki: J. Mater. Sci: Mater. Med. Vol. 355 (1996). p.7.

Google Scholar

[17] H. Kawahara, S. Nakakira, M. Ito, K. Niwa, D. Kawahara and S. Matsuda: J. Mater. Sci.: Mater. Med. Vol. 17(2006). p.717.

Google Scholar

[18] D. Li, Z. Yang, X. Li, Z. Li, J. Li and J. Yang: Biomed. Mater. Vol. 5 (2010). p.25007.

Google Scholar

[19] T.J. Martin and N.A. Sims: Tren. Mol. Med. Vol. 11(2005). p.76.

Google Scholar

[20] S.L. Teitelbaum: Sci. Vol. 289(2000). p.1504.

Google Scholar