[1]
Huang Tianyun. The restrained optimization pattern search method research progress [J]. Chinese Journal of Computers, 2008, 31(7): 1200-1251.
Google Scholar
[2]
Xiao Xiaonan. Optimm Operation and Optimum Analysis to Permit Coding Function of a Kind of Signal Transitive Stochastic System[J]. Journal of Xiamen University Natural Science, 2009, 48(2): 170-173.
Google Scholar
[3]
Qiu Jinming, Zhang Li. F-interfere law genercetion and its feature recognition [J]. Journal of Systems Engineering and Electronics, 2009, 20 (4): 777-783.
Google Scholar
[4]
Ren Y, Lu S P, Xia N M. Remarks on the existence and uniqueness of the solutions to stochastic funtional differential equations with infinite delay [J]. Comput Appl Math, 2008, 220: 364-372.
DOI: 10.1016/j.cam.2007.08.022
Google Scholar
[5]
Cai Shangfeng. Stochastic control theory [M]. Shanghai: Shanghai Jiaotong University Press, (1987).
Google Scholar
[6]
Shi Kaiquan, Yao Bingxue. Funtion S-rough sets and las identification [J]. Scince in China Series F: Information Sciences, 2008, 51 (5): 499-510.
Google Scholar
[7]
Adrian Specker. Information system modelling [M]. Huang Guanwei, Huo Jiazhen, Wei Yi translates. Beijing: Qinghua University Press, (2007).
Google Scholar
[8]
Xiao Xiaonan. The Continuity and Unigueness of the Solution for the Simultaneous Equa-tions of a Class of Gaussian Diffusion Process and Analysis of Consistency[J]. Journal of Xiamen University Natural Science, 2007, 46(2): 161-163.
Google Scholar
[9]
Yuan C G, William G. Approximate solutions of stochastic differential delay equations with Markovian switching [J]. Comput Appl Math, 2006, 194: 207-226.
DOI: 10.1016/j.cam.2005.07.004
Google Scholar
[10]
Frauenfelder P, Schwab C, Todor R A. Finite elements for elliptic problems with stochastic coeffieients [J]. Computer Methods in Applied Mechnics and Engineering, 2005, 194 (2/5): 205-228.
DOI: 10.1016/j.cma.2004.04.008
Google Scholar
[11]
Yan H _Wei Q L. Determining compromise weights fos group decision making[J]. Journal of Operational Research Society, 2002(53): 680-687.
DOI: 10.1057/palgrave.jors.2601349
Google Scholar
[12]
Wei Quanling, Yan Hong. Generalized optimized theory and model [M]. Beijing: Scientific Press, (2003).
Google Scholar