Ecotoxicity of Nanomaterials on the Basis of Clay Minerals

Article Preview

Abstract:

This article deals with the verification of ecotoxicity of nanomaterials on the basis of selected clay minerals (montmorillonite, kaolinite) and quartz as a reference substance. The ecotoxicity was determined by the inhibition of marine bacteria Vibrio fischeri, with relationship to the particle size and concentration of minerals in water leachate prepared according to Council Decision 2003/33/EC. Statistically significant dependence between inhibition of Vibrio fischeri and the concentration of minerals in water leachate was found for montmorillonite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

282-287

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.Y. Lee, S.J. Kim, S.Y. Chung and C.H. Jeong: Sorption of hydrophobic organic compounds onto organoclays. Chemosphere, Vol. 55 (2004), pp.781-785.

DOI: 10.1016/j.chemosphere.2003.11.007

Google Scholar

[2] E. Hynkova, Z. Cechova and G. Sadovska: Corrosion properties and composition of pore water from bentonites. Chem. Listy, Vol. 101 (2007), pp.415-421.

Google Scholar

[3] W. Matthes and G. Kahr: Sorption of organic compounds by Al and Zr-hydroxy-intercalated and pillared bentonite. Clay Clay Min., Vol. 48 (2000), pp.593-602.

DOI: 10.1346/ccmn.2000.0480601

Google Scholar

[4] S. Triantafyllou, E. Christodoulou and P. Neou-Syngouna: Removal of nickel and cobalt from aqueous solutions by Na-activated bentonite. Clay Clay Min., Vol. 47 (1999), pp.567-572.

DOI: 10.1346/ccmn.1999.0470503

Google Scholar

[5] W. Matthes, F.W. Madsen and G. Kahr: Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite. Clay Clay Min., Vol. 47 (1999), pp.617-629.

DOI: 10.1346/ccmn.1999.0470508

Google Scholar

[6] V. Stone, B. Nowack, A. Baun, N. Brink, F. Krammer, M. Dusinska, R. Handy, S. Hankin, M. Hassellov, E. Joner and T.F. Fernandes: Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Sci. Total Environ., Vol: 408 (2010).

DOI: 10.1016/j.scitotenv.2009.10.035

Google Scholar

[7] P. Borm: The potential risks of nanomaterials: a rewiev carried out for ECETOC. Part. Fibre Toxicol. Vol. 3 (2006), pp.1-35.

Google Scholar

[8] T. Sovova and V. Koci: Ecotoxicology of nanomaterials. Chem. Listy, Vol. 106 (2012), pp.82-87.

Google Scholar

[9] R. Lopez-Roldan, L. Kazlauskaite, J. Ribo, M.C. Riva, S. Gonzales and J.L. Cortina: Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination. Sci. Total Environ., Vol. 440 (2012), pp.307-313.

DOI: 10.1016/j.scitotenv.2012.05.043

Google Scholar

[10] A. Viani, A.F. Gaultieri and G. Artioli: The nature of disorder in montmorillonite by simulation of X-ray powder patterns. Am. Miner., Vol. 87 (2002), pp.966-975.

DOI: 10.2138/am-2002-0720

Google Scholar

[11] P.R. Day, in: Methods of soil analysis, Patr 1, edited by C.A. Black, American Society of Agronomy, Inc., Madison, Wisconsin, pp.545-567 (1965).

Google Scholar

[12] D.P. Franzmeier, G.C. Steinhardt, J.F. Crum and L.D. Norton: Soil Characterization in Indiana: I. Field and Laboratory Procedures. Research Bulletin No. 943, pp.13-14 (1977).

Google Scholar

[13] R. Rojickova-Padrtova, B. Marsalek and I. Holoubek: Evaluation of alternative and standard toxicity assays for screening of environmental samples: Selection of an optimal test battery. Chemosphere, Vol. 37 (1998), pp.495-507.

DOI: 10.1016/s0045-6535(98)00065-4

Google Scholar

[14] N. Strigul, L. Vaccari, C. Galdun, M. Wazne, X. Liu, C. Christodoulatos and K. Jasinkiewicz: Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri. Desalination, Vol. 248 (2009), pp.771-782.

DOI: 10.1016/j.desal.2009.01.013

Google Scholar

[15] J. Lappalainen, R. Juvonen, J. Nurmi and M. Karp: Automated color correction method for Vibrio fischeri toxicity test. Comaprision of standard and kinetic assays. Chemosphere, Vol. 45 (2001), pp.635-641.

DOI: 10.1016/s0045-6535(00)00579-8

Google Scholar