[1]
B. Oregan and M. Gratzel, Nature, 1991, 353, 737-740.
Google Scholar
[2]
P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin and M. Grätzel, Advanced Materials, 2004, 16, 1806-1811.
DOI: 10.1002/adma.200400039
Google Scholar
[3]
C. -Y. Chen, J. -G. Chen, S. -J. Wu, J. -Y. Li, C. -G. Wu and K. -C. Ho, Angewandte Chemie International Edition, 2008, 47, 7342-7345.
Google Scholar
[4]
S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, The Journal of Physical Chemistry B, 2005, 109, 3480-3487.
Google Scholar
[5]
Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin and M. Gratzel, Nat Mater, 2008, 7, 626-630.
Google Scholar
[6]
J. D. Roy-Mayhew, D. J. Bozym, C. Punckt and I. A. Aksay, ACS nano, 2010, 4, 6203-6211.
DOI: 10.1021/nn1016428
Google Scholar
[7]
N. Papageorgiou, Coordination Chemistry Reviews, 2004, 248, 1421-1446.
Google Scholar
[8]
T. P. Chou, Q. F. Zhang, B. Russo, G. E. Fryxell and G. Z. Cao, Journal of Physical Chemistry C, 2007, 111, 6296-6302.
Google Scholar
[9]
Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. Kim and W. I. Lee, Advanced Materials, 2009, 21, 3668-+.
Google Scholar
[10]
K. H. Yu and J. H. Chen, Nanoscale Research Letters, 2009, 4, 1-10.
Google Scholar
[11]
X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes, Nano Letters, 2008, 8, 3781-3786.
Google Scholar
[12]
H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N. G. Park, Advanced Materials, 2008, 20, 195-+.
Google Scholar
[13]
K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Nano Letters, 2007, 7, 69-74.
Google Scholar
[14]
P. Docampo, S. Guldin, M. Stefik, P. Tiwana, M. C. Orilall, S. Huttner, H. Sai, U. Wiesner, U. Steiner and H. J. Snaith, Advanced Functional Materials, 2010, 20, 1787-1796.
DOI: 10.1002/adfm.200902089
Google Scholar
[15]
E. J. W. Crossland, M. Nedelcu, C. Ducati, S. Ludwigs, M. A. Hillmyer, U. Steiner and H. J. Snaith, Nano Letters, 2009, 9, 2813-2819.
DOI: 10.1021/nl800942c
Google Scholar
[16]
S. H. Ahn, J. T. Park, J. K. Koh, D. K. Roh and J. H. Kim, Chemical Communications, 2011, 47, 5882-5884.
Google Scholar
[17]
S. H. Ahn, J. H. Koh, J. A. Seo and J. H. Kim, Chemical Communications, 2010, 46, 1935-(1937).
Google Scholar
[18]
H. Shinoda, P. J. Miller and K. Matyjaszewski, Macromolecules, 2001, 34, 3186-3194.
Google Scholar
[19]
J. F. Hester, P. Banerjee, Y. Y. Won, A. Akthakul and M. H. Acar, Macromolecules, 2002, 35, 7652-7661.
DOI: 10.1021/ma0122270
Google Scholar
[20]
S. H. Ahn, Chemical communications (London. 1996), 2011, 47, 5882.
Google Scholar
[21]
M. Niederberger, M. H. Bartl and G. D. Stucky, Chemistry of Materials, 2002, 14, 4364-4370.
Google Scholar
[22]
S. H. Ahn, W. S. Chi, J. T. Park, J. K. Koh, D. K. Roh and J. H. Kim, Advanced Materials, 2012, 24, 519-+.
Google Scholar
[23]
P. Wang, S. M. Zakeeruddin, I. Exnar and M. Gratzel, Chemical Communications, 2002, 2972-2973.
Google Scholar
[24]
P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar and M. Gratzel, Journal of the American Chemical Society, 2003, 125, 1166-1167.
Google Scholar
[25]
U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, Nature, 1998, 395, 583-585.
DOI: 10.1038/26936
Google Scholar
[26]
S. Yanagida, Y. H. Yu and K. Manseki, Accounts of chemical research, 2009, 42, 1827-1838.
Google Scholar
[27]
J. Kim, J. K. Koh, B. Kim, S. H. Ahn, H. Ahn, D. Y. Ryu, J. H. Kim and E. Kim, Advanced Functional Materials, 2011, 21, 4633-4639.
DOI: 10.1002/adfm.201101520
Google Scholar
[28]
T. S. Senthil, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, M. Thambidurai and R. Balasundaraprabhu, Renewable Energy, 2011, 36, 2484-2488.
DOI: 10.1016/j.renene.2011.01.031
Google Scholar
[29]
W. S. Chi, J. K. Koh, S. H. Ahn, J. -S. Shin, H. Ahn, D. Y. Ryu and J. H. Kim, Electrochemistry Communications, 2011, 13, 1349-1352.
Google Scholar