Solid-State Dye-Sensitized Solar Cells Using Mesoporous TiO2 Films Fabricated with Amphiphilic Rubbery Random Copolymer

Article Preview

Abstract:

An amphiphilic copolymer, PLMA-POEM, was synthesized with hydrophobic poly (lauryl methacrylate) (PLMA) and hydrophilic poly (oxyethylene methacrylate) (POEM), which is cheap and rubbery state. The copolymers were characterized by using Fourier transform infra-red spectroscopy (FT-IR), 1H-nuclear magnetic resonance (1H-NMR) and gel permeation spectroscopy (GPC). The copolymers were used as sacrificial agent to fabricate anatase mesoporous TiO2 films and, by varying amounts of TiO2 particles, polymer molecular weight (MW), concentration of the copolymers, various mesoporous TiO2 films were fabricated. With a low MW polymer, the TiO2 formed a worm-like structure with smaller pores, whereas an aggregated honeycomb-like TiO2 with bimodal pores was obtained for the high MW system, characterized by scanning electron microscopy (SEM), grazing incidence small-angle X-ray scattering (GI-SAXS) and N2 adsorptiondesorption measurement. With 2μm-thick TiO2 film, efficiency was 4.2% due to better pore filling of the solid electrolyte and improved light scattering properties. By using a layer-by-layer method, the efficiency was further improved to 5.0% at 7μm thickness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-301

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Oregan and M. Gratzel, Nature, 1991, 353, 737-740.

Google Scholar

[2] P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin and M. Grätzel, Advanced Materials, 2004, 16, 1806-1811.

DOI: 10.1002/adma.200400039

Google Scholar

[3] C. -Y. Chen, J. -G. Chen, S. -J. Wu, J. -Y. Li, C. -G. Wu and K. -C. Ho, Angewandte Chemie International Edition, 2008, 47, 7342-7345.

Google Scholar

[4] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, The Journal of Physical Chemistry B, 2005, 109, 3480-3487.

Google Scholar

[5] Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin and M. Gratzel, Nat Mater, 2008, 7, 626-630.

Google Scholar

[6] J. D. Roy-Mayhew, D. J. Bozym, C. Punckt and I. A. Aksay, ACS nano, 2010, 4, 6203-6211.

DOI: 10.1021/nn1016428

Google Scholar

[7] N. Papageorgiou, Coordination Chemistry Reviews, 2004, 248, 1421-1446.

Google Scholar

[8] T. P. Chou, Q. F. Zhang, B. Russo, G. E. Fryxell and G. Z. Cao, Journal of Physical Chemistry C, 2007, 111, 6296-6302.

Google Scholar

[9] Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. Kim and W. I. Lee, Advanced Materials, 2009, 21, 3668-+.

Google Scholar

[10] K. H. Yu and J. H. Chen, Nanoscale Research Letters, 2009, 4, 1-10.

Google Scholar

[11] X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes, Nano Letters, 2008, 8, 3781-3786.

Google Scholar

[12] H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N. G. Park, Advanced Materials, 2008, 20, 195-+.

Google Scholar

[13] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Nano Letters, 2007, 7, 69-74.

Google Scholar

[14] P. Docampo, S. Guldin, M. Stefik, P. Tiwana, M. C. Orilall, S. Huttner, H. Sai, U. Wiesner, U. Steiner and H. J. Snaith, Advanced Functional Materials, 2010, 20, 1787-1796.

DOI: 10.1002/adfm.200902089

Google Scholar

[15] E. J. W. Crossland, M. Nedelcu, C. Ducati, S. Ludwigs, M. A. Hillmyer, U. Steiner and H. J. Snaith, Nano Letters, 2009, 9, 2813-2819.

DOI: 10.1021/nl800942c

Google Scholar

[16] S. H. Ahn, J. T. Park, J. K. Koh, D. K. Roh and J. H. Kim, Chemical Communications, 2011, 47, 5882-5884.

Google Scholar

[17] S. H. Ahn, J. H. Koh, J. A. Seo and J. H. Kim, Chemical Communications, 2010, 46, 1935-(1937).

Google Scholar

[18] H. Shinoda, P. J. Miller and K. Matyjaszewski, Macromolecules, 2001, 34, 3186-3194.

Google Scholar

[19] J. F. Hester, P. Banerjee, Y. Y. Won, A. Akthakul and M. H. Acar, Macromolecules, 2002, 35, 7652-7661.

DOI: 10.1021/ma0122270

Google Scholar

[20] S. H. Ahn, Chemical communications (London. 1996), 2011, 47, 5882.

Google Scholar

[21] M. Niederberger, M. H. Bartl and G. D. Stucky, Chemistry of Materials, 2002, 14, 4364-4370.

Google Scholar

[22] S. H. Ahn, W. S. Chi, J. T. Park, J. K. Koh, D. K. Roh and J. H. Kim, Advanced Materials, 2012, 24, 519-+.

Google Scholar

[23] P. Wang, S. M. Zakeeruddin, I. Exnar and M. Gratzel, Chemical Communications, 2002, 2972-2973.

Google Scholar

[24] P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar and M. Gratzel, Journal of the American Chemical Society, 2003, 125, 1166-1167.

Google Scholar

[25] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, Nature, 1998, 395, 583-585.

DOI: 10.1038/26936

Google Scholar

[26] S. Yanagida, Y. H. Yu and K. Manseki, Accounts of chemical research, 2009, 42, 1827-1838.

Google Scholar

[27] J. Kim, J. K. Koh, B. Kim, S. H. Ahn, H. Ahn, D. Y. Ryu, J. H. Kim and E. Kim, Advanced Functional Materials, 2011, 21, 4633-4639.

DOI: 10.1002/adfm.201101520

Google Scholar

[28] T. S. Senthil, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, M. Thambidurai and R. Balasundaraprabhu, Renewable Energy, 2011, 36, 2484-2488.

DOI: 10.1016/j.renene.2011.01.031

Google Scholar

[29] W. S. Chi, J. K. Koh, S. H. Ahn, J. -S. Shin, H. Ahn, D. Y. Ryu and J. H. Kim, Electrochemistry Communications, 2011, 13, 1349-1352.

Google Scholar