On Solutions of Inverse Problem for Hermitian Generalized Hamiltonian Matrices

Article Preview

Abstract:

Hamiltonian matrices have many applications to design automation and autocontrol, in particular in the linear-quadratic autocontrol problem. This paper studies the inverse problems of generalized Hamiltonian matrices for matrix equations. By real representation of complex matrix, we give the necessary and sufficient conditions for the existence of a Hermitian generalized Hamiltonian solutions to the matrix equations, and then derive the representation of the general solutions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

2727-2731

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] William F. Trench, Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl. 389(2004)23-31.

DOI: 10.1016/j.laa.2004.03.035

Google Scholar

[2] T. Kailath, Inear Systems, Information and System Sciences, Prentice-Hall, (1980).

Google Scholar

[3] V. L. Mehrmann, Lecture Notes in Control and Information Sciences, Springer-Verlag.

Google Scholar

[4] K. Zhou, J. C. Doyle, K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddle River, NJ, (1995).

Google Scholar

[5] R. Coleman, On the construction of real canonical forms of Hamiltonian matrices whose spectrum is an imaginary, Math. Comput. Simul. 46(1998) 117-155.

DOI: 10.1016/s0378-4754(98)00073-1

Google Scholar

[6] N. Del Buono, L. Lopez, T. Politi, computation of functions of Hamiltonian and skew-symmetric matrices, Math. Comput. Simul. 79(2008) 1284-1297.

DOI: 10.1016/j.matcom.2008.03.011

Google Scholar

[7] V. Mehrmann, C. Schr¨oder, D. S. Watkins, A new block method for computing the Hamiltonian Schur form, Linear Algebra Appl. 431(2009)350-368.

DOI: 10.1016/j.laa.2009.01.026

Google Scholar

[8] Zhongzhi Zhang, Xiyan Hu and Lei Zhang, Least-Squares Solutions of Inverse Problem for Hermitian Generalized Hamiltonian Matrices, Appl. Math. Lett. 17(2004)303-308.

DOI: 10.1016/s0893-9659(04)90067-5

Google Scholar

[9] Y. Wang, C. Li, D. Cheng, Generalized Hamiltonian realization of time-invariant nonlinear system, Automat. 39(2003)1473-1443.

DOI: 10.1016/s0005-1098(03)00132-8

Google Scholar

[10] T. Jiang, M. Wei, On solutions of the matrix equations and , Linear Algebra Appl. 367(2003)225-233.

Google Scholar

[11] A. Wu, G. Duan, H. Yu, On solutions of the matrix equations and Appl. Math. Comput. 183(2006)932-941.

Google Scholar

[12] A. Wu, G. Feng, G. Duan, W. Wu, iterative solutions to copuled Sylvester-conjugate matrix equations, Comput. Math. Appl. 60(2010)54-66.

DOI: 10.1016/j.camwa.2010.04.029

Google Scholar