[1]
William F. Trench, Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl. 389(2004)23-31.
DOI: 10.1016/j.laa.2004.03.035
Google Scholar
[2]
T. Kailath, Inear Systems, Information and System Sciences, Prentice-Hall, (1980).
Google Scholar
[3]
V. L. Mehrmann, Lecture Notes in Control and Information Sciences, Springer-Verlag.
Google Scholar
[4]
K. Zhou, J. C. Doyle, K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddle River, NJ, (1995).
Google Scholar
[5]
R. Coleman, On the construction of real canonical forms of Hamiltonian matrices whose spectrum is an imaginary, Math. Comput. Simul. 46(1998) 117-155.
DOI: 10.1016/s0378-4754(98)00073-1
Google Scholar
[6]
N. Del Buono, L. Lopez, T. Politi, computation of functions of Hamiltonian and skew-symmetric matrices, Math. Comput. Simul. 79(2008) 1284-1297.
DOI: 10.1016/j.matcom.2008.03.011
Google Scholar
[7]
V. Mehrmann, C. Schr¨oder, D. S. Watkins, A new block method for computing the Hamiltonian Schur form, Linear Algebra Appl. 431(2009)350-368.
DOI: 10.1016/j.laa.2009.01.026
Google Scholar
[8]
Zhongzhi Zhang, Xiyan Hu and Lei Zhang, Least-Squares Solutions of Inverse Problem for Hermitian Generalized Hamiltonian Matrices, Appl. Math. Lett. 17(2004)303-308.
DOI: 10.1016/s0893-9659(04)90067-5
Google Scholar
[9]
Y. Wang, C. Li, D. Cheng, Generalized Hamiltonian realization of time-invariant nonlinear system, Automat. 39(2003)1473-1443.
DOI: 10.1016/s0005-1098(03)00132-8
Google Scholar
[10]
T. Jiang, M. Wei, On solutions of the matrix equations and , Linear Algebra Appl. 367(2003)225-233.
Google Scholar
[11]
A. Wu, G. Duan, H. Yu, On solutions of the matrix equations and Appl. Math. Comput. 183(2006)932-941.
Google Scholar
[12]
A. Wu, G. Feng, G. Duan, W. Wu, iterative solutions to copuled Sylvester-conjugate matrix equations, Comput. Math. Appl. 60(2010)54-66.
DOI: 10.1016/j.camwa.2010.04.029
Google Scholar