The Influence of Various pH Values on Monoraphidium sp. FXY-10 Growth and Lipid Parameters in Autotrophic and Heterotrophic Conditions

Article Preview

Abstract:

The influence of pH on Monoraphidium sp. FXY-10 growth, lipid content, lipid yield, biomass yield, and fatty acid composition is studied in autotrophic and heterotrophic conditions. The results reveal that Monoraphidium sp. FXY-10 can grow better in an acidic environment. Under autotrophic and heterotrophic conditions, the culture time is 37 and 9 day, respectively. And the maximum biomass of algal cells is 32 and 367mg/l/d with the lipid content in autotrophic and heterotrophic conditions reached to 49% and 39%, respectively, with high biomass yield, lipid yield, the saturated fatty acid and monounsaturated fatty acid under heterotrophic condition, proving that the algal cells are a viable material for the production of biodiesel.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

60-66

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.L. Harwood, A.L. Jones, Lipid Metabolism in Algae, Adv. Bot. Res Academic Press. 16 (1989) 1-53.

Google Scholar

[2] A. Goldstein, D. Baertlein and A. Danon, Phosphate starvation stress as an experimental system for molecular analysis Plant, Mol. Biol. Rep. 7 (1989) 7-16.

DOI: 10.1007/bf02669241

Google Scholar

[3] T. Skowroński, B. Pawlik and M. Jakubowski, Reduction of cadmium toxicity to green microalga Stichococcus bacillaris by manganese, B. Environ. Contam. Tox. 41 (1988) 915-920.

DOI: 10.1007/bf02021055

Google Scholar

[4] D. Schmitt, A. Müller, Z. Csögör, F.H. Frimmel and C. Posten, The adsorption kinetics of metal ions onto different microalgae and siliceous earth, Water. Res. 35 (2001) 779-785.

DOI: 10.1016/s0043-1354(00)00317-1

Google Scholar

[5] J. Abalde, A. Cid, S. Reiriz, E. Torres and C. Herrero, Response of the marine microalga Dunaliella tertiolecta (Chlorophyceae) to copper toxicity in short time experiments, B. Environ. Contam. Tox. 54 (1995) 317-324.

DOI: 10.1007/bf00197447

Google Scholar

[6] Q. Lin, N. Gu and J. Lin, Effect of ferric ion on nitrogen consumption, biomass and oil accumulation of a Scenedesmus rubescens-like microalga, Bioresour Technol. 112 (2012) 242-247.

DOI: 10.1016/j.biortech.2012.02.097

Google Scholar

[7] X. Yu, P. Zhao, C. He, J. Li, X. Tang, J. Zhou and Z. Huang, Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock, Bioresour Technol. 121 (2012) 256-262.

DOI: 10.1016/j.biortech.2012.07.002

Google Scholar

[8] I.K. Zeinab, M.S.A. Mohsen, E.S. Salwa and A.K. Imam, Effect of pH on growth and biochemical responses of Dunaliellabardawil and Chlorella ellipsoidea, World. J Microbiol. Biotechnol. 26 (2010) 1225–1231.

Google Scholar

[9] X.W. Zhang, F. Chen and M.R. Johns, Kinetic models for heterotrophic growth of Chlamydomonas reinhardtii in batch and fed-batch cultures, Process Biochem. 35 (1999) 385-389.

DOI: 10.1016/s0032-9592(99)00082-5

Google Scholar

[10] R. Gardner, P. Peters, B. Peyton and K. Cooksey, Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta, J Appl. Phycol. 23 (2011) 1005-1016.

DOI: 10.1007/s10811-010-9633-4

Google Scholar

[11] G. Liang, Y. Mo, J. Tang and Q. Zhou, Improve lipid production by pH shifted-strategy in batch culture of Chlorella protothecoides, Afr. J Microbiol. Res. Vol. 5 (2011) 5030-5038.

DOI: 10.5897/ajmr11.720

Google Scholar

[12] Y. Liang, N. Sarkany and Y. Cui, Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions, Biotechnol. Lett. 31 (2009) 1043-1049.

DOI: 10.1007/s10529-009-9975-7

Google Scholar

[13] H. Xu, X. Miao and Q. Wu, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol. 126 (2006) 499-507.

DOI: 10.1016/j.jbiotec.2006.05.002

Google Scholar

[14] X. Yang, P. Liu, Z. Hao, J. Shi and S. Zhang, Characterization and identification of freshwater microalgal strains toward biofuel production, BioResources. 7 (2012) 686-695.

DOI: 10.15376/biores.7.1.686-695

Google Scholar

[15] J. Liu, J. Huang, Z. Sun, Y. Zhong, Y. Jiang and F. Chen, Differential lipid and fatty acid profiles of autotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production, Bioresour. Technol. 102 (2011).

DOI: 10.1016/j.biortech.2010.06.017

Google Scholar

[16] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert and A. Darzins, Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant. J. 54 (2008) 621-639.

DOI: 10.1111/j.1365-313x.2008.03492.x

Google Scholar