[1]
J.L. Harwood, A.L. Jones, Lipid Metabolism in Algae, Adv. Bot. Res Academic Press. 16 (1989) 1-53.
Google Scholar
[2]
A. Goldstein, D. Baertlein and A. Danon, Phosphate starvation stress as an experimental system for molecular analysis Plant, Mol. Biol. Rep. 7 (1989) 7-16.
DOI: 10.1007/bf02669241
Google Scholar
[3]
T. Skowroński, B. Pawlik and M. Jakubowski, Reduction of cadmium toxicity to green microalga Stichococcus bacillaris by manganese, B. Environ. Contam. Tox. 41 (1988) 915-920.
DOI: 10.1007/bf02021055
Google Scholar
[4]
D. Schmitt, A. Müller, Z. Csögör, F.H. Frimmel and C. Posten, The adsorption kinetics of metal ions onto different microalgae and siliceous earth, Water. Res. 35 (2001) 779-785.
DOI: 10.1016/s0043-1354(00)00317-1
Google Scholar
[5]
J. Abalde, A. Cid, S. Reiriz, E. Torres and C. Herrero, Response of the marine microalga Dunaliella tertiolecta (Chlorophyceae) to copper toxicity in short time experiments, B. Environ. Contam. Tox. 54 (1995) 317-324.
DOI: 10.1007/bf00197447
Google Scholar
[6]
Q. Lin, N. Gu and J. Lin, Effect of ferric ion on nitrogen consumption, biomass and oil accumulation of a Scenedesmus rubescens-like microalga, Bioresour Technol. 112 (2012) 242-247.
DOI: 10.1016/j.biortech.2012.02.097
Google Scholar
[7]
X. Yu, P. Zhao, C. He, J. Li, X. Tang, J. Zhou and Z. Huang, Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock, Bioresour Technol. 121 (2012) 256-262.
DOI: 10.1016/j.biortech.2012.07.002
Google Scholar
[8]
I.K. Zeinab, M.S.A. Mohsen, E.S. Salwa and A.K. Imam, Effect of pH on growth and biochemical responses of Dunaliellabardawil and Chlorella ellipsoidea, World. J Microbiol. Biotechnol. 26 (2010) 1225–1231.
Google Scholar
[9]
X.W. Zhang, F. Chen and M.R. Johns, Kinetic models for heterotrophic growth of Chlamydomonas reinhardtii in batch and fed-batch cultures, Process Biochem. 35 (1999) 385-389.
DOI: 10.1016/s0032-9592(99)00082-5
Google Scholar
[10]
R. Gardner, P. Peters, B. Peyton and K. Cooksey, Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta, J Appl. Phycol. 23 (2011) 1005-1016.
DOI: 10.1007/s10811-010-9633-4
Google Scholar
[11]
G. Liang, Y. Mo, J. Tang and Q. Zhou, Improve lipid production by pH shifted-strategy in batch culture of Chlorella protothecoides, Afr. J Microbiol. Res. Vol. 5 (2011) 5030-5038.
DOI: 10.5897/ajmr11.720
Google Scholar
[12]
Y. Liang, N. Sarkany and Y. Cui, Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions, Biotechnol. Lett. 31 (2009) 1043-1049.
DOI: 10.1007/s10529-009-9975-7
Google Scholar
[13]
H. Xu, X. Miao and Q. Wu, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol. 126 (2006) 499-507.
DOI: 10.1016/j.jbiotec.2006.05.002
Google Scholar
[14]
X. Yang, P. Liu, Z. Hao, J. Shi and S. Zhang, Characterization and identification of freshwater microalgal strains toward biofuel production, BioResources. 7 (2012) 686-695.
DOI: 10.15376/biores.7.1.686-695
Google Scholar
[15]
J. Liu, J. Huang, Z. Sun, Y. Zhong, Y. Jiang and F. Chen, Differential lipid and fatty acid profiles of autotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production, Bioresour. Technol. 102 (2011).
DOI: 10.1016/j.biortech.2010.06.017
Google Scholar
[16]
Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert and A. Darzins, Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant. J. 54 (2008) 621-639.
DOI: 10.1111/j.1365-313x.2008.03492.x
Google Scholar