Identification of Trichloroethene in Groundwater Using Trees

Article Preview

Abstract:

Several tonnes of useful chemicals are produced every year for use in households, agriculture production and industries. However, these chemicals move from their original production or application sites through the air, surface or groundwater or soils and are deposited in unintended places. The resultant contamination of these matrices and the subsequent effects on living organisms, have become a major concern for researchers and policy makers. This study aimed at using literature to briefly review the role of plants in identifying trichloroethene contamination in groundwater. It was found that plants, through direct contact with the soil and such processes as advective uptake, translocation, diffusion and particle deposition are able to incorporate most of these contaminants into their tissues and store them in leaves, branches and trunks. The entire process of removing TCE by this method has thus been found to be inexpensive, easy to undertake and has been shown to be environmentally friendly. It may therefore be an effective way for the identification and analysis of this contaminant.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

919-925

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. K Gerhardt, X. Huang, R.B. Glick and M.B. Greenberg: Plant Sci. Vol. 176 (2008), pp.20-30.

Google Scholar

[2] Information on http: /www. womenshealthmatters. ca/health-resources/environmental-health/glossary.

Google Scholar

[3] World Health Organization (WHO): Air Quality Guidelines, second edition.

Google Scholar

[4] Information on http: /www. atsdr. cdc. gov/toxprofiles/tp19. html.

Google Scholar

[5] Information on http: /www. epa. gov/triexplorer.

Google Scholar

[6] Information on http: /www. epa. gov/ttnatw01/urban/natprpt. pdf.

Google Scholar

[7] L. Alessio and M. Crippa, in: Data Profiles for Selected Chemicals and Pharmaceuticals, edited by F. Argentesi, R. Roi, J.M. Sevilla Marcos (2000), Joint Research Centre, European Commission. pp.163-215.

Google Scholar

[8] M. Minnich: Environ. Monit. Sys. Lab. EPA 600/R-93/140. (1993).

Google Scholar

[9] Information on http: /www. netl. doe. gov/about/groundwater.

Google Scholar

[10] P. McCarty: Platform presentation at Battelle Conference on remediation of chlorinated and recalcitrant compounds (2008), Monterey, USA.

Google Scholar

[11] M. Larsen, J. Burken, J. Machackova, U.G. Karlson and S. Trapp: Environ. Sci. and Technol. Vol. 42 (2008), pp.1711-1717.

DOI: 10.1021/es0717055

Google Scholar

[12] D. Bagley and J. Gossett: Appl. and Environ. Microbiol. Vol. 56 (1990), pp.2511-2516.

Google Scholar

[13] Y. Yokouchi, L.A. Barrie, D. Toom and H. Akimoto: Atmos. Environ. Vol. 30 (1996), pp.1723-1727.

Google Scholar

[14] C.H. Dimmer, A. McCulloch, P.G. Simmonds, G. Nickless, M.R. Bassford and D. Smythe-Wright: Atmos. Environ. Vol. 35(2001), pp.1171-1182.

DOI: 10.1016/s1352-2310(00)00427-1

Google Scholar

[15] W.D. Hafner and R. Hites: Environ. Sci. Technol. Vol. 37 (2003), pp.3764-3773.

Google Scholar

[16] D.L. Carlson and R.A. Hites: Environ. Sci. Technol. Vol. 39 (2005), p.740–747.

Google Scholar

[17] S.I. Davis, et al: ATSDR's trichloroethylene subregistry methods and results: 1989-2000. (2005).

Google Scholar

[18] Arch Environ Occup. Health. Vol. 60, pp.130-139.

Google Scholar

[19] R.H.A. Brown, J.N. Cape and J.G. Farmer: Chemosph. Vol. 38 (1999), pp.795-806.

Google Scholar

[20] T. Green, J. Dow, C.N. Ong, V. Ng, H.Y. Ong, Z.X. Zhuang, X.F. Yang and L. Bloemen : Occup. Environ. Med. Vol. 61 (2004), p.312–317.

Google Scholar

[21] V. Harth, T. Brüning and H.M. Bolt: Rev. Environ. Health. Vol. 20 (2005), pp.103-118.

Google Scholar

[22] E.A. Lock and C.J. Reed: Toxicol. Sci. Vol. 91(2006), pp.313-331.

Google Scholar

[23] W.A. Chiu, J. Jinot, S.C. Scott, S.L. Makris, G.S. Cooper, R.C. Dzubow, A.S. Bale, M.V. Evans, K.Z. Guyton, N. Keshava, J.C. Lipscomb, S. Barone, J.F. Fox, M.R. Gwinn, J. Schaum and J.C. Caldwell: Environ. Health. Perspect. Vol. 121(2006).

DOI: 10.1289/ehp.1205879

Google Scholar

[24] J.G. Burken and J.L. Schnoor: Environ. Sci. and Technol. Vol. 32(1998), pp.3379-3385.

Google Scholar

[25] G. Gayathri, C.M. Negri, S.B. Minsker and C. Werth: Groundw. Monit. and Remediat. Vol. 27 (2007), pp.65-74.

Google Scholar

[26] D.E. Salt, R.D. Smith and I. Raskin: Annu. Rev. Plant Physiol. and Mol. Biol. Vol. 49(1998), pp.643-668.

DOI: 10.1146/annurev.arplant.49.1.643

Google Scholar

[27] J.L. Schnoor, L.A. Licht, S.C. McCutcheon, N.L. Wolfe and L.H. Carriera: Environ. Sci. and Technol. 29(1995), p. 318A.

Google Scholar

[28] R. Kamath, J.A. Rentz, J.L. Schnoor and P.J.J. Alvarez, in: Studies in surface science and catalysis, edited by R. Vazquez-Duhalt and R. Quintero-Ramirez. Amsterdam, Elsevier, (2004), pp.447-478.

Google Scholar

[29] S. Khan, M. Afzal, S. Iqbal and Q.M. Khan: Chemosph. 90 (2013), pp.1317-1332.

Google Scholar

[30] T.T. Tsai, C.M. Kao, A. Hong, S.H. Liang and H.Y. Chien: Physiocochem. Eng. Aspects 322(2008), pp.130-137.

Google Scholar

[31] C.A. James, G. Xin, S.L. Doty, I. Muiznieks, L. Newman and S.E. Strand: Environ. Pollut. 157(2009), pp.2564-2569.

Google Scholar

[32] L. Weissflog, G.H.J. Kruger, S.T. Forczek, C.A. Lange, K. Kotte, A. Pfennigsdorff, J. Rohlenova, K. Fuksova, H. Uhlirova, M. Matucha and P. Schroder: S. Afr. J. of Bot. 73(2007), p.89–96.

Google Scholar

[33] R.S. Zalesny Jr, A.H. Wiese, E.O. Bauer and D.E. Riemenschneider: Biomass and Bioenerg. 30(2006), pp.784-793.

Google Scholar

[34] P. Vervaeke, S. Luyssaert, J. Mertens, E. Meers, F.M.G. Tack and N. Lust: Environ. Pollut. 126(2003), pp.275-282.

DOI: 10.1016/s0269-7491(03)00189-1

Google Scholar

[35] G.C. Struckhoff, J.G. Burken and J.G. Schumacher: Environ. Sci. and Technol. 39(2005), pp.1563-1568.

Google Scholar

[36] S. Trapp and C. Legind, in: Dealing with Contaminated Sites edited by F.A. Swartjes, Springer Science+Business Media B.V. (2011).

Google Scholar

[37] E. Kvesitadze, T. Sadunishvili, G. Kvesitadz: World Acad. of Sci., Eng. and Tech. (2009), p.55.

Google Scholar

[38] B.J. Orchard, W.J. Doucette, J.K. Chard and B. Bugbee: Environ. Toxicol. and Chem. Vol. 19 (2000), p.895–903.

Google Scholar

[39] J. Schönherr and M.J. Bukovac: Plant Physiol. Vol. 49(1972), p.813–823.

Google Scholar

[40] F. Korte, G. Kvesitadze, D. Ugrekhelidze, M. Gordeziani, G. Khatisashvili, O. Buadze, G. Zaalishvili and F. Coulston: Ecotoxicol. and Environ. Saf. Vol. 47(2000), pp.1-26.

DOI: 10.1006/eesa.2000.1929

Google Scholar

[41] M. Hiatt: Environ. Sci. and Technol. 33(1999), pp.4126-4133.

Google Scholar

[42] D.A. Vroblesky and TM Yanosky: Use of tree-ring chemistry to document historical groundwater contamination events. Groundw J 28(1990), pp.677-684.

DOI: 10.1111/j.1745-6584.1990.tb01983.x

Google Scholar

[43] B.V. Tangahu, S.R.S. Abdullah, H. Basri, M. Idris, N. Anuar and M. Mukhlisin: Int. J. of Chem. Eng. Article ID 939161, (2011), p.31.

Google Scholar

[44] S.C. McCutcheon and J.L. Schnoor (eds), in: Phytoremediation: transformation and control of contaminants. Hoboken, New Jersey: Wiley- Interscience, Inc (2003).

Google Scholar

[45] Information on http: /www. rpi. edu/dept/chem-eng/Biotech-Environ/MISC/phytorem. html.

Google Scholar

[46] G.S. Bañuelos, H.A. Ajwa, N. Terry and A. Zayed: J. of Soil and Water Conserv. 52(1997), pp.426-430.

Google Scholar

[47] J.M. Yoon, B.T. Oh, C.L. Just, J.L. Schnoor: Environ. Sci. and Technol. 36(2002), pp.4649-55.

Google Scholar