[2]
N.E. Klepeis, W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, et al: The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology, Vol. 11 (2001).
DOI: 10.1038/sj.jea.7500165
Google Scholar
[3]
ECA (European Concerted Action 'Indoor air quality and its impact on man', COST Project 613). Sampling Strategies for Chemical Substances in Indoor Air. Report No. 6; EUR 12617 EN. Office for Official Publications of the European Communities, Luxembourg, (1989).
Google Scholar
[4]
K. Sakai, D. Norbäck, Y. Mi, E. Shibata, M. Kamijima, T. Yamada, et al: A comparison of indoor air pollutants in Japan and Sweden: formaldehyde, nitrogen dioxide, and chlorinated volatile organic compounds. Environmental Research, Vol. 94 (2004).
DOI: 10.1016/s0013-9351(03)00140-3
Google Scholar
[5]
J. Tang, C.Y. Chan, W. Wang, L.Y. Chan, G. Sheng, J. Fu: Volatile organic compounds in a multi-storey shopping mall in Guangzhou, South China. Atmospheric Environment, Vol. 39 (2002), p.7374–7383.
DOI: 10.1016/j.atmosenv.2005.09.018
Google Scholar
[6]
L. Lan, Z.W. Lian: Application of statistical power analysis – How to determine the right sample size in human health, comfort and productivity research. Building and Environment, Vol. 45 (2010), p.1202–1213.
DOI: 10.1016/j.buildenv.2009.11.002
Google Scholar
[7]
S.C. Lee, H. Guo, W.M. Li, L.Y. Chan: Inter-comparison of air pollutants concentrations in different indoor environments in Hong Kong. Atmospheric Environment, Vol. 36 (2002), p.1929–(1940).
DOI: 10.1016/s1352-2310(02)00176-0
Google Scholar
[8]
E.S. Rubin, R.N. Cooper, R.A. Frosch, T.H. Lee, G. Marland, A.H. Rosenfeld, et al: Realistic mitigation options for global warming. Science, Vol. 257 (1992), pp.148-149 and 261–266.
DOI: 10.1126/science.257.5067.148
Google Scholar
[9]
B. Nordell: Thermal pollution causes global warming. Global and Planetary Change, Vol. 38 (2003), p.305–312.
DOI: 10.1016/s0921-8181(03)00113-9
Google Scholar
[10]
A. Chehri, W. Farjow, H.T. Mouftah, X. Fernando: Design of wireless sensor network for mine safety monitoring. 24th Canadian Conference on Electrical and Computer Engineering, (2011), p.001532–001535.
DOI: 10.1109/ccece.2011.6030722
Google Scholar
[11]
H. Karl, A. Willig: Protocols and Architecture for Wireless Sensor Networks. Chichester, England: John Wiley and Sons, (2005).
Google Scholar
[12]
W.H. Wang, Y.F. Yuan, Z.H. Ling: The Research and Implement of Air Quality Monitoring System Based on ZigBee; 7th International Conference on Wireless Communications, Networking and Mobile Computing (2011), p.1–4.
DOI: 10.1109/wicom.2011.6040328
Google Scholar
[13]
Information on http: /www. xbow. com.
Google Scholar
[14]
W.S. Jang, W.M. Healy, M.J. Skibniewski: Wireless sensor networks as part of a web-based building environmental monitoring system. Automation in Construction, Vol. 17 (2008), p.729–736.
DOI: 10.1016/j.autcon.2008.02.001
Google Scholar
[15]
X.W. He, Y. Wang: The Design of Tungsten Mine Environment Monitoring System Based on Wireless Sensor Networks. Second International Conference on Intelligent System Design and Engineering Application (2012), p.1319–1322.
DOI: 10.1109/isdea.2012.513
Google Scholar
[16]
D.S. Yun, S.H. Cho: A Data Transmission Method in ZigBee Networks Using Power Efficient Device. International Conference on Advanced Technologies for Communications, (2008), p.162–165.
DOI: 10.1109/atc.2008.4760545
Google Scholar
[17]
J. Axelson: Create A USB Virtual COM Port. Circuit Cellar, Vol. 217 (2008), p.70.
Google Scholar