High Physicochemical Persistence of Aluminum Nanoparticles in Synthetic Body Fluids

Article Preview

Abstract:

When nanoparticles get into a living body, they interact with body fluids. This study shows high physicochemical persistence of electroexplosive aluminum nanoparticles in physiological solutions simulating body fluids: Artificial Sweat (ASw), Simulated Saliva (SS), Simulated Gastric Fluid (SGF), and Artificial Alveolar Fluid (AAF). It has been demonstrated that after 14 days of exposure in ASw SS SGF AAF solutions, the average size of initial 90 nm nanoparticles became 90 100 230 90 nm, and the average size of initial 5 μm agglomerates became 1.6 0.9 1.0 3.0 μm, respectively. According to s SEM data, the exposed particles retained their spherical shape. With the help of the X-ray phase analysis it was shown that the oxide/hydroxide phase content in nanoparticles did not increase. It has been concluded that highly-reactive aluminum nanoparticles are capable to retain their phase composition, dispersion, and morphology in synthetic body fluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

248-256

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.P. Il'in, A.V. Korshunov, L.O. Tolbanova, Application of aluminum nanopowder in hydrogen energy, Bull. Tomsk Polytec. Univ. 311 (2007) 10-14.

Google Scholar

[2] L. Galfetti, L.T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, S. Bellucci, Nanoparticles for solid rocket propulsion, J. Phys.: Condens. Matter. 18 (2006) 1991–(2005).

DOI: 10.1088/0953-8984/18/33/s15

Google Scholar

[3] L.T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A.B. Vorozhtsov, V.S. Sedoi, V.A. Babuk, Burning of nano-aluminized composite rocket propellants, Comb. Expl. Shock Wav. 41 (2005) 680-692.

DOI: 10.1007/s10573-005-0080-5

Google Scholar

[4] J. Sadhik Basha, R.B. Anand, Effects of nanoparticle additive in the water-diesel emulsion fuel on the performance, emission and combustion characteristics of a diesel engine, Int. J. Vehicle Des. 59 (2012) 164 – 181.

DOI: 10.1504/ijvd.2012.048692

Google Scholar

[5] D.E. Tallman, K.L. Levine, C.N. Siripirom, V. G. Gelling, G.P. Bierwagen, S. G. Croll, Nanocomposite of polypyrrole and alumina nanoparticles as a coating filler for the corrosion protection of aluminium alloy 2024-T3, Appl. Surf. Sci. 254 (2008).

DOI: 10.1016/j.apsusc.2008.02.099

Google Scholar

[6] K-Y. Hwang, Y-J. Yim, H-C. Ham, Effects of aluminum oxide particles on the erosion of nozzle liner for solid rocket motors, J. Kor. Soc. Aer. & Space Sci. 34 (2006) 95-103.

DOI: 10.5139/jksas.2006.34.8.095

Google Scholar

[7] Z. Sun, W. Wang, R. Wang, J. Duan, Y. Hu, J. Ma, J. Zhou, S. Xie, X. Lu, Z. Zhu, S. Chen, Y. Zhao, H. Xu, C. Wang, X-D. Yang, Aluminum nanoparticles enhance anticancer immune response induced by tumor cell vaccine, Cancer Nanotec. 1 (2010) 63-69.

DOI: 10.1007/s12645-010-0001-5

Google Scholar

[8] Information on http: /abercade. ru/research/analysis/67. html.

Google Scholar

[9] E.A. Kolesnikov, A. Yu. Godymchuk, D.V. Kuznetsov, The study of emission sources in the work area nanospray science lab, Proceed. X Int. Conf. Prospects for the development of basic sciences, (Tomsk. Politec. Univ., Tomsk, 2013) 911-913.

Google Scholar

[10] G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles, Environ. Health Perspec. 113 (2005) 823–839.

DOI: 10.1289/ehp.7339

Google Scholar

[11] P. Andujara, S. Lanonea, P. Brochardd, J. Boczkowskia, Respiratory effects of manufactured nanoparticles, Rev. Mal. Respir. 28 (2011) 66-75.

Google Scholar

[12] J. Wua, W. Liu, C. Xue, S. Zhou, F. Lan, L. Bi, H. Xu, X. Yang, F. -D. Zeng, Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure, Tox. Let. 191 (2009) 1-8.

DOI: 10.1016/j.toxlet.2009.05.020

Google Scholar

[13] S. Cross, B Innes, M. Roberts, Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized ZnO formulation, Skin Pharm. Phys. 20 (2007) 148–154.

DOI: 10.1159/000098701

Google Scholar

[14] S.K. Shinde, N.D. Grampurohit, D.D. Gaikwad, S.L. Jadhav, M.V. Gadhave, P.K. Shelke, Toxicity induced by nanoparticles, Asi. Pac. J. Trop. Dis. 2 (2012) 331-334.

DOI: 10.1016/s2222-1808(12)60072-3

Google Scholar

[15] S. Bidgoli, M. Mahdavi, S. Rezayat, M. Korani, A. Amani, P. Ziarati, Toxicity assessment of nanosilver wound dressing in wistar rat, Acta med. Iran. 51 (2013) 203-208.

Google Scholar

[16] M. Pailleux, J. Pourchez, D. Boudart, P. Grosseau, M. Cottier, Study on the toxicity of inhaled alumina nanoparticles: impact of physicochemical properties and adsorption artifacts on the measurement of biological responses, J. Phys.: Conf. Ser. 304 (2011).

DOI: 10.1088/1742-6596/304/1/012041

Google Scholar

[17] Q.L. Zhang, M.Q. Li, J.W. Ji, F.P. Gao, R. Bai, C.Y. Chen, Z.W. Wang, C. Zhang, Q. Niu, In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms, Int. J. Immun. Pharm. 24 (2011) 23-29.

Google Scholar

[18] L. Chen, R. Yokel, B. Hennig, M. Toborek, Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature, J. NeuroIm. Pharm. 4 (2008) 286-295.

DOI: 10.1007/s11481-008-9131-5

Google Scholar

[19] X. Li, H. Zheng, Z. Zhang, M. Li, Z. Huang, H. Schluesener, Y. Li, S. Xu, Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains, Nanomed.: Nanotech., Biol., and Med. 5 (2005) 47-479.

DOI: 10.1016/j.nano.2009.01.013

Google Scholar

[20] V. Kakkar, I.P. Kaur, Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain, Food and Chem. Toxic. 49 (2011) 2906-2913.

DOI: 10.1016/j.fct.2011.08.006

Google Scholar

[21] A.M. Schrand., M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith, A.F. Syed, Metal-based nanoparticles and their toxicity assessment, Wiley Interdiscip. Rev. Nanomed. Nanobiotech. 5 (2010) 544-568.

DOI: 10.1002/wnan.103

Google Scholar

[22] I. M. Sadiq, S. Pakrashi, N. Chandrasekaran, A. Mukherjee, Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp., J. Nanopart. Res. 13 (2011) 3287-3299.

DOI: 10.1007/s11051-011-0243-0

Google Scholar

[23] W. Lin, Y. Xu, C. -C. Huang, Y. Ma, K. B. Shannon, D. -R. Chen, Y. -W. Huang, Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells, J. Nanopart. Res. 11 (2008) 25-39.

DOI: 10.1007/s11051-008-9419-7

Google Scholar

[24] H. Liu, L. Ma, J. Zhao, J. Liu, J. Yan, J. Ruan, F. Hong, Biochemical toxicity of nano-anatase TiO2 particles in mice, Biol. Trace Elem. Res. 129 (2009) 170-180.

DOI: 10.1007/s12011-008-8285-6

Google Scholar

[25] C. Beera, R. Foldbjerga, Y. Hayashib, D. Sutherlandb, H. Autrupa, Toxicity of silver nanoparticles – Nanoparticle or silver ion?, Tox. Let. 208 (2012) 286-292.

Google Scholar

[26] W.S. Cho, R. Duffin, C.A. Poland, A. Duschl, G.J. Oostingh, W. Macnee, M. Bradley, I.L. Megson, K. Donaldson, Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs, Nanotox. 6 (2012).

DOI: 10.3109/17435390.2011.552810

Google Scholar

[27] A. Yu. Godymchuk, G.G. Savelyev, D.V. Gorbatenko, Dissolution of Copper Nanopowders in Inorganic Biological Media, Rus. J. Gen. Chem. 80 (2010) 881-888.

DOI: 10.1134/s1070363210050026

Google Scholar

[28] K. Midander, J. Pan, I.O. Wallinder, K. Heim, C. Leygraf, Nickel release from nickel particles in artificial sweat, Cont. Dermat. 56 (2007) 325-330.

DOI: 10.1111/j.1600-0536.2007.01115.x

Google Scholar

[29] E. Yunda, A. Godymchuk, Dissolution of zinc nanoparticles in pulmonary fluid, Proceed. 7th Int. For. Strat. Tech. (Tomsk. Politec. Univ., Tomsk, 2012) 208-211.

DOI: 10.1109/ifost.2012.6357532

Google Scholar

[30] M. Hadioui, S. Leclerc, K.J. Wilkinson, Multimethod quantification of Ag+ release from nanosilver, Talanta, 105 (2013) 15-19.

DOI: 10.1016/j.talanta.2012.11.048

Google Scholar

[31] R.F. Domingos, D.F. Simon, С. Hauser, K.J. Wilkinson, Bioaccumulation and Effects of CdTe/CdS Quantum Dots on Chlamydomonas reinhardtii: Nanoparticles or the Free Ions?, Env. Sci. Tech. 45 (2011) 7664-7669.

DOI: 10.1021/es201193s

Google Scholar

[32] I.Y. Mutas, A.P. Il'in, The interaction of aluminum nanopowders with different dispersion of gaseous water, Bull. Tomsk Polytec. Univ. 307 (2004) 89-92.

Google Scholar

[33] A. Yu. Godymchuk, A.P. Il'in, A.P. Astankova, Oxidation of aluminum nanopowder in the liquid water by heating, Bull. Tomsk Polytec. Univ. 310 (2007) 102-104.

Google Scholar

[34] A.P. Astankova, A. Yu. Godymchuk, A.A. Gromov, A.P. Il'in, The kinetics of self-heating in the reaction between aluminum nanopowder and liquid water, Rus. J. Gen. Chem. 82 (2008) 1913-(1920).

DOI: 10.1134/s0036024408110204

Google Scholar

[35] A. Yu. Godymchuk, V.V. An, A.P. Il'in, Formation of porous structure of the oxide-hydroxide of aluminum in the interaction of aluminum nanopowders with water, Phys. Chem. Mat. Proces. 5 (2005) 69-73.

Google Scholar

[36] K. Midander, I. Odnevall Wallinder, C. Leygraf, In vitro studies of copper release from powder particles in synthetic biological media, Env. Poll. 145 (2007) 51-59.

DOI: 10.1016/j.envpol.2006.03.041

Google Scholar

[37] M. R. C. Marques, R. Loebenberg, M. Almukainzi, Simulated Biological Fluids with Possible Application in Dissolution Testing, Dissol. Tech. 118 (2011) 15-28.

DOI: 10.14227/dt180311p15

Google Scholar

[38] L. Jiang, J. Guan, L. Zhao, J. Li, W. Yang, pH-dependent aggregation of citrate-capped Au nanoparticles induced by Cu2+ ions: The competition effect of hydroxyl groups with the carboxyl groups, Coll. and Surf. A: Physicochem. Eng. Asp. 346 (2009).

DOI: 10.1016/j.colsurfa.2009.06.023

Google Scholar

[39] A. Yamamoto, R. Honma, M. Sumita, T. Hanawa, Cytotoxicity evaluation of ceramic particles of different sizes and shapes, J. Biomed. Mater. Res. A.: 68 (2004) 244-256.

DOI: 10.1002/jbm.a.20020

Google Scholar

[40] A. Albanese, P.S. Tang, W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annu. Rev. Biomed. Eng. 14 (2012) 1-16.

DOI: 10.1146/annurev-bioeng-071811-150124

Google Scholar

[41] B. Ispas, D. Andreescu, A. Patel, D. V. Goia, S. Andreescu, K. N. Wallace, Toxicity and Developmental Defects of Different Sizes and Shape Nickel Nanoparticles in Zebrafish, Env. Sci. and Tech. 16 (2009) 6349-6356.

DOI: 10.1021/es9010543

Google Scholar