[1]
A.P. Il'in, A.V. Korshunov, L.O. Tolbanova, Application of aluminum nanopowder in hydrogen energy, Bull. Tomsk Polytec. Univ. 311 (2007) 10-14.
Google Scholar
[2]
L. Galfetti, L.T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, S. Bellucci, Nanoparticles for solid rocket propulsion, J. Phys.: Condens. Matter. 18 (2006) 1991–(2005).
DOI: 10.1088/0953-8984/18/33/s15
Google Scholar
[3]
L.T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A.B. Vorozhtsov, V.S. Sedoi, V.A. Babuk, Burning of nano-aluminized composite rocket propellants, Comb. Expl. Shock Wav. 41 (2005) 680-692.
DOI: 10.1007/s10573-005-0080-5
Google Scholar
[4]
J. Sadhik Basha, R.B. Anand, Effects of nanoparticle additive in the water-diesel emulsion fuel on the performance, emission and combustion characteristics of a diesel engine, Int. J. Vehicle Des. 59 (2012) 164 – 181.
DOI: 10.1504/ijvd.2012.048692
Google Scholar
[5]
D.E. Tallman, K.L. Levine, C.N. Siripirom, V. G. Gelling, G.P. Bierwagen, S. G. Croll, Nanocomposite of polypyrrole and alumina nanoparticles as a coating filler for the corrosion protection of aluminium alloy 2024-T3, Appl. Surf. Sci. 254 (2008).
DOI: 10.1016/j.apsusc.2008.02.099
Google Scholar
[6]
K-Y. Hwang, Y-J. Yim, H-C. Ham, Effects of aluminum oxide particles on the erosion of nozzle liner for solid rocket motors, J. Kor. Soc. Aer. & Space Sci. 34 (2006) 95-103.
DOI: 10.5139/jksas.2006.34.8.095
Google Scholar
[7]
Z. Sun, W. Wang, R. Wang, J. Duan, Y. Hu, J. Ma, J. Zhou, S. Xie, X. Lu, Z. Zhu, S. Chen, Y. Zhao, H. Xu, C. Wang, X-D. Yang, Aluminum nanoparticles enhance anticancer immune response induced by tumor cell vaccine, Cancer Nanotec. 1 (2010) 63-69.
DOI: 10.1007/s12645-010-0001-5
Google Scholar
[8]
Information on http: /abercade. ru/research/analysis/67. html.
Google Scholar
[9]
E.A. Kolesnikov, A. Yu. Godymchuk, D.V. Kuznetsov, The study of emission sources in the work area nanospray science lab, Proceed. X Int. Conf. Prospects for the development of basic sciences, (Tomsk. Politec. Univ., Tomsk, 2013) 911-913.
Google Scholar
[10]
G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles, Environ. Health Perspec. 113 (2005) 823–839.
DOI: 10.1289/ehp.7339
Google Scholar
[11]
P. Andujara, S. Lanonea, P. Brochardd, J. Boczkowskia, Respiratory effects of manufactured nanoparticles, Rev. Mal. Respir. 28 (2011) 66-75.
Google Scholar
[12]
J. Wua, W. Liu, C. Xue, S. Zhou, F. Lan, L. Bi, H. Xu, X. Yang, F. -D. Zeng, Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure, Tox. Let. 191 (2009) 1-8.
DOI: 10.1016/j.toxlet.2009.05.020
Google Scholar
[13]
S. Cross, B Innes, M. Roberts, Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized ZnO formulation, Skin Pharm. Phys. 20 (2007) 148–154.
DOI: 10.1159/000098701
Google Scholar
[14]
S.K. Shinde, N.D. Grampurohit, D.D. Gaikwad, S.L. Jadhav, M.V. Gadhave, P.K. Shelke, Toxicity induced by nanoparticles, Asi. Pac. J. Trop. Dis. 2 (2012) 331-334.
DOI: 10.1016/s2222-1808(12)60072-3
Google Scholar
[15]
S. Bidgoli, M. Mahdavi, S. Rezayat, M. Korani, A. Amani, P. Ziarati, Toxicity assessment of nanosilver wound dressing in wistar rat, Acta med. Iran. 51 (2013) 203-208.
Google Scholar
[16]
M. Pailleux, J. Pourchez, D. Boudart, P. Grosseau, M. Cottier, Study on the toxicity of inhaled alumina nanoparticles: impact of physicochemical properties and adsorption artifacts on the measurement of biological responses, J. Phys.: Conf. Ser. 304 (2011).
DOI: 10.1088/1742-6596/304/1/012041
Google Scholar
[17]
Q.L. Zhang, M.Q. Li, J.W. Ji, F.P. Gao, R. Bai, C.Y. Chen, Z.W. Wang, C. Zhang, Q. Niu, In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms, Int. J. Immun. Pharm. 24 (2011) 23-29.
Google Scholar
[18]
L. Chen, R. Yokel, B. Hennig, M. Toborek, Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature, J. NeuroIm. Pharm. 4 (2008) 286-295.
DOI: 10.1007/s11481-008-9131-5
Google Scholar
[19]
X. Li, H. Zheng, Z. Zhang, M. Li, Z. Huang, H. Schluesener, Y. Li, S. Xu, Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains, Nanomed.: Nanotech., Biol., and Med. 5 (2005) 47-479.
DOI: 10.1016/j.nano.2009.01.013
Google Scholar
[20]
V. Kakkar, I.P. Kaur, Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain, Food and Chem. Toxic. 49 (2011) 2906-2913.
DOI: 10.1016/j.fct.2011.08.006
Google Scholar
[21]
A.M. Schrand., M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith, A.F. Syed, Metal-based nanoparticles and their toxicity assessment, Wiley Interdiscip. Rev. Nanomed. Nanobiotech. 5 (2010) 544-568.
DOI: 10.1002/wnan.103
Google Scholar
[22]
I. M. Sadiq, S. Pakrashi, N. Chandrasekaran, A. Mukherjee, Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp., J. Nanopart. Res. 13 (2011) 3287-3299.
DOI: 10.1007/s11051-011-0243-0
Google Scholar
[23]
W. Lin, Y. Xu, C. -C. Huang, Y. Ma, K. B. Shannon, D. -R. Chen, Y. -W. Huang, Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells, J. Nanopart. Res. 11 (2008) 25-39.
DOI: 10.1007/s11051-008-9419-7
Google Scholar
[24]
H. Liu, L. Ma, J. Zhao, J. Liu, J. Yan, J. Ruan, F. Hong, Biochemical toxicity of nano-anatase TiO2 particles in mice, Biol. Trace Elem. Res. 129 (2009) 170-180.
DOI: 10.1007/s12011-008-8285-6
Google Scholar
[25]
C. Beera, R. Foldbjerga, Y. Hayashib, D. Sutherlandb, H. Autrupa, Toxicity of silver nanoparticles – Nanoparticle or silver ion?, Tox. Let. 208 (2012) 286-292.
Google Scholar
[26]
W.S. Cho, R. Duffin, C.A. Poland, A. Duschl, G.J. Oostingh, W. Macnee, M. Bradley, I.L. Megson, K. Donaldson, Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs, Nanotox. 6 (2012).
DOI: 10.3109/17435390.2011.552810
Google Scholar
[27]
A. Yu. Godymchuk, G.G. Savelyev, D.V. Gorbatenko, Dissolution of Copper Nanopowders in Inorganic Biological Media, Rus. J. Gen. Chem. 80 (2010) 881-888.
DOI: 10.1134/s1070363210050026
Google Scholar
[28]
K. Midander, J. Pan, I.O. Wallinder, K. Heim, C. Leygraf, Nickel release from nickel particles in artificial sweat, Cont. Dermat. 56 (2007) 325-330.
DOI: 10.1111/j.1600-0536.2007.01115.x
Google Scholar
[29]
E. Yunda, A. Godymchuk, Dissolution of zinc nanoparticles in pulmonary fluid, Proceed. 7th Int. For. Strat. Tech. (Tomsk. Politec. Univ., Tomsk, 2012) 208-211.
DOI: 10.1109/ifost.2012.6357532
Google Scholar
[30]
M. Hadioui, S. Leclerc, K.J. Wilkinson, Multimethod quantification of Ag+ release from nanosilver, Talanta, 105 (2013) 15-19.
DOI: 10.1016/j.talanta.2012.11.048
Google Scholar
[31]
R.F. Domingos, D.F. Simon, С. Hauser, K.J. Wilkinson, Bioaccumulation and Effects of CdTe/CdS Quantum Dots on Chlamydomonas reinhardtii: Nanoparticles or the Free Ions?, Env. Sci. Tech. 45 (2011) 7664-7669.
DOI: 10.1021/es201193s
Google Scholar
[32]
I.Y. Mutas, A.P. Il'in, The interaction of aluminum nanopowders with different dispersion of gaseous water, Bull. Tomsk Polytec. Univ. 307 (2004) 89-92.
Google Scholar
[33]
A. Yu. Godymchuk, A.P. Il'in, A.P. Astankova, Oxidation of aluminum nanopowder in the liquid water by heating, Bull. Tomsk Polytec. Univ. 310 (2007) 102-104.
Google Scholar
[34]
A.P. Astankova, A. Yu. Godymchuk, A.A. Gromov, A.P. Il'in, The kinetics of self-heating in the reaction between aluminum nanopowder and liquid water, Rus. J. Gen. Chem. 82 (2008) 1913-(1920).
DOI: 10.1134/s0036024408110204
Google Scholar
[35]
A. Yu. Godymchuk, V.V. An, A.P. Il'in, Formation of porous structure of the oxide-hydroxide of aluminum in the interaction of aluminum nanopowders with water, Phys. Chem. Mat. Proces. 5 (2005) 69-73.
Google Scholar
[36]
K. Midander, I. Odnevall Wallinder, C. Leygraf, In vitro studies of copper release from powder particles in synthetic biological media, Env. Poll. 145 (2007) 51-59.
DOI: 10.1016/j.envpol.2006.03.041
Google Scholar
[37]
M. R. C. Marques, R. Loebenberg, M. Almukainzi, Simulated Biological Fluids with Possible Application in Dissolution Testing, Dissol. Tech. 118 (2011) 15-28.
DOI: 10.14227/dt180311p15
Google Scholar
[38]
L. Jiang, J. Guan, L. Zhao, J. Li, W. Yang, pH-dependent aggregation of citrate-capped Au nanoparticles induced by Cu2+ ions: The competition effect of hydroxyl groups with the carboxyl groups, Coll. and Surf. A: Physicochem. Eng. Asp. 346 (2009).
DOI: 10.1016/j.colsurfa.2009.06.023
Google Scholar
[39]
A. Yamamoto, R. Honma, M. Sumita, T. Hanawa, Cytotoxicity evaluation of ceramic particles of different sizes and shapes, J. Biomed. Mater. Res. A.: 68 (2004) 244-256.
DOI: 10.1002/jbm.a.20020
Google Scholar
[40]
A. Albanese, P.S. Tang, W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annu. Rev. Biomed. Eng. 14 (2012) 1-16.
DOI: 10.1146/annurev-bioeng-071811-150124
Google Scholar
[41]
B. Ispas, D. Andreescu, A. Patel, D. V. Goia, S. Andreescu, K. N. Wallace, Toxicity and Developmental Defects of Different Sizes and Shape Nickel Nanoparticles in Zebrafish, Env. Sci. and Tech. 16 (2009) 6349-6356.
DOI: 10.1021/es9010543
Google Scholar