Formation Hybrid Method of Multilayer Biocoatings, Based on PVD Technology

Article Preview

Abstract:

Hybrid method of obtaining calcium-phosphate coatings is presented in this article. Physical and chemical, mechanical and tribological hybrid coatings research makes it possible to determine the coatings formation modes satisfying medical and technical requirements. This multilayer coating consists of an oxide underlayer formed by gas thermal oxidation and calcium phosphate layer formed by RF magnetron sputtering at a frequency of 13.56 MHz. Experiments were carried out in different modes. Calcium-phosphate coatings formed in mixture of argon and oxygen at 1:1 ratio pressure of 0.3 Pa have the best physical and chemical, mechanical and tribological properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-247

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] А.М. Aronov, V.F. Pichugin, E.V. Eshenko, М.А. Ryabzeva, R.А. Surmenev, S.I. Tverdokhlebov, E.V. Shesterikov, Thin calcium phosphate coatings obtained by RF magnetron sputtering, and the prospects for their application in medical technology, Med. Tech. 3 (2008).

DOI: 10.1007/s10527-008-9029-9

Google Scholar

[2] А.М. Aronov, V.F. Pichugin, S.I. Tverdokhlebov, Methodological foundations of medical devices designing and manufacturing, Wind, Tomsk (2007).

Google Scholar

[3] S.I. Tverdokhlebov, E.N. Bolbasov, E.V. Shesterikov, A.I. Malchikhina, V.A. Novikov, Y.G. Anissimov, Research of the surface properties of the thermoplastic copolymer of Vinilidene Fluoride and Tetrafluoroethylene modified with radio-frequency magnetron sputtering for medical application, Appl. Sur. Sci. 263 (2012).

DOI: 10.1016/j.apsusc.2012.09.025

Google Scholar

[4] K. Prabakaran, A. Balamurugan, S. Rajeswari, Development of calcium phosphate based apatite from hen's eggshell, Bull. Mater. Sci. 28 (2005) 115–119.

DOI: 10.1007/bf02704229

Google Scholar

[5] K. Ozeki, T. Yuhta, H. Aoki, I. Nishimura, Y. Fukui, Cristal chemistry of hydroxyapatite deposited on titanium by sputtering technique, Bio-Med. Mat. Eng. 10 (2000) 221-227.

Google Scholar

[6] W. Tong, J. Chen, X. Li, J. Feng, Y. Cao, Z. Yang, X. Zhang, Preffered orientation of plasma sprayed hydroxyapatite coatings, J. of Mater. Sci. 31 (1996) 3739–3742.

DOI: 10.1007/bf00352788

Google Scholar

[7] J. Weng, Q. Liu, J. Wolke, D. Zhang, K. De Groot, The role of amorphous phase in nucleating bone-like apatite on plasma-sprayed hydroxyapatite coatings in simulated body fluid, J. Mater. Sci. Lett. 16 (1997) 335–337.

Google Scholar

[8] D.R. Cooley, A.F. van Dellen, J.O. Burgess, S. Windeler, The advantages of coated titanium implants prepared by radiofrequency sputtering from hydroxyapatite, J. Prost. Dent. 67 (1992) 93–100.

DOI: 10.1016/0022-3913(92)90057-h

Google Scholar

[9] J.G.C. Wolke, K. van Dijk, H.G. Schaeken, K. de Groot, J.A. Jansen, Study of the surface characteristics of magnetron-sputter calcium phosphate coatings, J. of Biomed. Mater. Res. 28 (1994) 1477–1484.

DOI: 10.1002/jbm.820281213

Google Scholar

[10] Y. Yang, K. -H. Kim, J.L. Ong, A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying, Biomat. 26 (2005) 327–337.

DOI: 10.1016/j.biomaterials.2004.02.029

Google Scholar

[11] K. van Dijk, H.G. Schaeken, J.G.C. Wolke, J.A. Jansen, Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings, Biomater. 17 (1996) 405–410.

DOI: 10.1016/0142-9612(96)89656-6

Google Scholar

[12] M. Yoshinari, Т. Hayakawa, J.G.C. Wolke, K. Nemoto, J.A. Jansen, Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings, J. of biomed. Mater. Res. 37 (1997) 60–67.

DOI: 10.1002/(sici)1097-4636(199710)37:1<60::aid-jbm8>3.0.co;2-h

Google Scholar

[13] V.М. Sidorenko, The mechanism of the electromagnetic fields effects on living organisms, Biophys. 46 (2001) 500–504.

Google Scholar

[14] A.S. Smirnov, Influence of titanium intraosseous implants surface characteristics on bone formation (literature review), New in dentistry, 8 (2000) 25–29.

Google Scholar

[15] V.А. Solovev, B.N. Davidov, А.B. Suleymanov, Т.V. Shinkarenko, Bone tissue morphological analysis after application of biocomposite materials in the new periosteoplastic method, Inst. of Dent. 1 (2002) 43–46.

Google Scholar

[16] Т. Albrektsson, C. Johansson, Osteoinduction, osteoconduction and osseointegration, Eur. Spine J. 10 (2001) 96–101.

Google Scholar

[17] X.X. Wang, X. Wang, Z.L. Li, Effects of mandibular distraction osteogenesis on the inferior alveolar nerve: an experimental study in monkeys, Plast. Reconstr. Surg. 109 (2002) 2373–2383.

DOI: 10.1097/00006534-200206000-00032

Google Scholar

[18] J. Ferrier, S.M. Ross, J. Kanehisa, J.E. Aubin, Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field, J. Cell. Physiol. 3 (1986) 283–288.

DOI: 10.1002/jcp.1041290303

Google Scholar

[19] V.A. Klimenov, S.I. Tverdokhlebov, E.N. Bolbasov, E.V. Shesterikov, V.A. Novikov, T.L. Volokitina, Application of atomic-force microscopy methods for testing the surface parameters of coatings of medical implants, Rus. J. of Nondestruct. Test. 47 (2011).

DOI: 10.1134/s1061830911110040

Google Scholar