Morphology and Magnetic Properties of NiCuZn Ferrite Synthesized by Solid-Molten Salt Method

Article Preview

Abstract:

Cu doped NiCuZn ferrite Ni0.4-xCuxZn0.6Fe2O4 (x=0.16~0.28) have been prepared by the solid-molten salt method using NaCl as flux. The structure and properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) techniques. It is found that addition of Cu2+ results in the particles size growing up because of the tend of crystal structure to be a normal Zn ferrite.The Ms values of NCZF are decrease gradually with increasing of Cu content. Curie temperature (Tc) increases with Cu2+ content in the range of x<0.20, and then decreasing rapidly. This can be ascribed to that the lower magnetization moment Cu2+ ion amount of B-site increasing leads to weaker super-exchange effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-29

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Su, H. Zhang, X. Tang, B. Liu and Z. Zhong: J. Alloys Compd. Vol. 475 (2009) No. 1-2, P. 683.

Google Scholar

[2] C. Micles, C. Tanasoiu, C. F. Miclea, A. Gheorghiu and V. Tanasoiu: J. Magn. Magn. Mater., Vol. 290-291 (2005) No. 3, P. 1506-1509.

DOI: 10.1016/j.jmmm.2004.11.561

Google Scholar

[3] H. Su, X.L. Tang, H.W. Zhang, Y. Jing, F. Bai and Z. Zhong, J. Appl. Phys., Vol. 113 (2013) No. 17, P. 17B301.

Google Scholar

[4] H. Su, H.W. Zhang, X. L. Tang and X. Xiang: J. Magn. Magn. Mater., Vol. 283 (2004) No. 2-3 P. 157-163.

Google Scholar

[5] J.H. Luo, Mater. Rese. Bull. Vol. 48 (2013) No. 9, 3527-3529.

Google Scholar

[6] C. Sujatha, K.V. Reddy, K.S. Babu A.R. Reddy, M.B. Suresh and K.H. Rao: J. Magn. Magn. Mater., Vol. 340 (2013) P. 38-45.

Google Scholar

[7] J. Yu, S. Tang, L. Zhai, Y.G. Shi and Y.W. Du: Physica B Vol. 404 (2009) NO. 21, P. 4253-4256.

Google Scholar

[8] S. Kim, J. Kim, J. Magn. Magn. Mater. Vol. 307 (2006) No. 2, P. 295-230.

Google Scholar

[9] X. Yuan, K. Shen, M. Xu, Q. Xu: J. Supercond. Nov. Magn. Vol. 25 (2012) No. 7, P. 2421-2424.

Google Scholar

[10] H. I. Hsiang and C. H. Chang: J. Magn. Magn. Mater., 278 (2004) No. 1-2, P. 18-222.

Google Scholar

[11] M. A. Ahmed, E. Ateia and S. I. Eidek: Mater Lett. Vol. 57 (2003) No. 26-27, P. 4256-4266.

Google Scholar

[12] X. Y. Guo, X. R. Yan, X. L. Cui and T. Bai: Chin. J. Inorg. Chem. Vol. 20 (2004) No. 8, P. 910-914.

Google Scholar

[13] Y. P. Fu, S. Tsao, C.T. Hu and Y.D. Yao: J. Alloys Compd. Vol. 395 (2005) No. 1-2, P. 272-276.

Google Scholar

[14] H. Nathani, S. Gubbala and R. D. K. Misra: Mater. Sci. Eng.,B. Vol. 121 (2005) No. 1-2, P. 126-136.

Google Scholar

[15] L. J. Zhao, Y. M. Cui, H. Yang, L.X. Yu, W.Q. Jin and S.H. Feng: Mater Lett. Vol. 60 (2006) No. 1, P. 104-108.

Google Scholar

[16] J. G. Huang, H. R. Zhuang and W. L. Li: J. Magn. Magn. Mater. Vol. 256 (2003) No. 1-3, P. 390-395.

Google Scholar

[17] A.E. Virden and K. O'Grady: J. Magn. Magn. Mater. Vol. 290-291 (2005) No. 2, P. 868-870.

Google Scholar