Characterization of the Hot Deformation Behavior of a Al-Si Alloy Using Processing Maps

Article Preview

Abstract:

The compression tests of solution treatment ZL109 alloy have been performed in the compression temperature range from 250°C to 450°C and the strain rate range from 0.0005s-1 to 0.5s-1. A processing map has been developed on the basis of flow stress data obtained as a function of temperature and strain rate, which revealed two domains of hot working for the alloy: one is situated at temperature between 270°C and 340°C with strain rate between 0.05s-1 and 0.5s-1, the other is situated at the temperature between 380°C and 450°C with strain rate between 0.0005s-1 and 0.004s-1. Combining with the processing map, the optimum parameters of hot working for ZL109 alloy are that 300°C/0.5s-1 and 450°C/0.0005s-1, respectively. Microstructure observations indicated that DRX occurred in both these domains. The instable zones, i. e., adiabatic shear bands formation, wedge cracking, were also identified in the processing map and microstructural examination was performed for validation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Manasijevic, R. Radisa, S. Markovic, Z. Acimovic-Pavlovic and K. Raic: Intermetallics, vol. 19 (2011) No. 4, p.486.

DOI: 10.1016/j.intermet.2010.11.011

Google Scholar

[2] G. Requena and H. P. Degischer: Materials Science Engineering A, vol. 420 (2006) Nos. 1-2, p.265.

Google Scholar

[3] Y.G. Li, Y. Yang, Y.Y. Wu, L.Y. Wang and X.F. Liu: Materials Science Engineering A, vol. 527 (2010) No. 26, p.7132.

Google Scholar

[4] Y.G. Li, Y. Yang, Y.Y. Wu, Z.S. Wei and X.F. Liu: Materials Science Engineering A, vol. 528 (2011) Nos. 13-14, p.4427.

Google Scholar

[5] M. Rajamuthamilselvan and S. Ramanathan: Journal of Alloys Compounds, vol. 509 (2011) No. 3, p.948.

Google Scholar

[6] K.P. Rao, Y.V.R.K. Prasad, K. Suresh, N. Hort and K.U. Kainer: Materials Science Engineering A, vol. 552 (2012), p.444.

Google Scholar

[7] Z.Y. Chen, Z.Q. Li and C. Yu: Materials Science Engineering A, vol. 528 (2011) No. 3, p.961.

Google Scholar

[8] Y.V.R.K. Prasad and K.P. Rao: Materials and Design, vol. 30 (2009) No. 9, p.3723.

Google Scholar

[9] X. Ma, W.D. Zeng, B. Xu, Y. Sun, C. Xue and Y.F. Han: Intermetallics, vol. 20 (2012) No. 1, p.1.

Google Scholar

[10] Y.V.R.K. Prasad and K.P. Rao: Materials Science Engineering A, vol. 391 (2005) Nos. 1-2, p.141.

Google Scholar

[11] O. Sivakesavam and Y.V.R.K. Prasad: Materials Science Engineering A, vol. 362 (2003) Nos. 1-2, p.118.

Google Scholar

[12] P. Cavaliere and E. Evangelista: Composites Science and Technology, vol. 66 (2006) No. 2, p.357.

Google Scholar

[13] Y.V.R.K. Prasad and T. Sheshacharulu: Indian Journal of Technology, vol. 28 (1990), p.435.

Google Scholar

[14] H.Z. Li, H.J. Wang, M. Zeng, X.P. Liang and H.T. Liu: Composites Science and Technology, vol. 71 (2011) No. 6, p.925.

Google Scholar

[15] Z. Yang, Y.C. Guo, J.P. Li, F. He, F. Xia and M.X. Liang: Materials Science Engineering A, vol. 485 (2008) Nos. 1-2, p.487.

Google Scholar

[16] Y.C. Lin, L.T. Li, Y.C. Xia and Y.Q. Jiang: Journal of Alloys and Compounds, vol. 550 (2013) p.438.

Google Scholar

[17] S. Anbuselvan and S. Ramanathan: Materials and Design, vol. 31 (2010) No. 5, p.2319.

Google Scholar

[18] S. Venugopal, P. Venugopal and S.L. Mannan: Journal of Materials Processing Technology, vol. 202 (2008) Nos. 1-3, p.201.

Google Scholar

[19] R. Kaibyshev, O. Sitdikov, I. Mazurina and D.R. Lesuer: Materials Science Engineering A, vol. 334 (2002) Nos. 1-2, p.104.

DOI: 10.1016/s0921-5093(01)01777-4

Google Scholar

[20] C.Y. Wang, X.J. Wang, H. Chang, K. Wu and M.Y. Zheng: Materials Science Engineering A, vol. 464 (2007) Nos. 1-2, p.52.

Google Scholar