Ultrasonic Assisted Dynamic Inverse Emulsion: A Novel Polymerization Technique to Prepare Conductive Polyaniline/Palygorskite Composite

Article Preview

Abstract:

The present work describes an ultrasonic assisted in-situ dynamic inverse emulsion polymerization process of aniline (ANI) in the presence of organic palygorskite (OPGS) in toluene. Core-shell structure of electrically conducting polymerized ANI (PANI) combined with OPGS was prepared by utilizing the method. Dodecylbenzenesulfonic acid (DBSA) was used as the dopant and emulsifier. The OPGS was obtained via the chemical reaction of pretreated palygorskite with hexadecyltrimethyl ammonium bromide (HTAB). The prepared PANI/OPGS composite was characterized by FT-IR, UV-Vis, XRD, TGA and SEM. In addition, the conductivity was evaluated at different ANI/OPGS weight ratio. When the ANI/OPGS weight ratio increased to 2:7, the conductivity of the composite still remained at 10 S/m at room temperature. The results demonstrated that ultrasonic assisted dynamic inverse emulsion would be an excellent polymerization technique to increase the conductivity and the polymerization rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

507-513

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. B. Liu, , Y.G. Shangguan, Y.H. Song and Q. Zheng: Journal of Applied Polymer Science, Vol. 129 (2013) No. 3, p.973.

Google Scholar

[2] A. Amin, R. Sarkar, C.N. Moorefield and G.R. Newkome: Designed Monomers and Polymers, Vol. 16 (2013) No. 6, p.528.

DOI: 10.1080/15685551.2013.771304

Google Scholar

[3] X.G. Zhang and L.S. Loo: Macromolecules, Vol. 42 (2009) No. 14, p.5196.

Google Scholar

[4] L. Morales, L. Franco, M.T. Casas and J. Puiggali: Journal of Polymer Science Part A-Polymer Chemistry, Vol. 47 (2009) No. 14, p.3616.

Google Scholar

[5] R.H. Eduardo, D. Margarita and A. Pilar: Journal of Materials Chemistry, Vol. 15 (2005) No. 35-36, p.3650.

Google Scholar

[6] C.C. Zeng and L.J. Lee: Macromolecules, Vol. 34 (2001) No. 12, p.4098.

Google Scholar

[7] C. Alber, Z. Shi, V.K. Johns, S. Lafave and Y. Liao: Journal of Applied Polymer Science, Vol. 129 (2013) No. 6, p.3546.

Google Scholar

[8] S. Chaudhari, Y. Sharma, P.S. Archana, R. Jose, S. Ramakrishna, S. Mhaisalkar and M. Srinivasan: Journal of Applied Polymer Science, Vol. 129 (2013) No. 4, p.1660.

DOI: 10.1002/app.38859

Google Scholar

[9] Y.D. Liu and H.J. Choi: Chemical Papers, Vol. 67 (2013) No. 8, p.849.

Google Scholar

[10] D. Ragupathy, S.C. Lee, S.S. Al-Deyab and A. Rajendran: Journal of Industrial And Engineering Chemistry, Vol. 19 (2013) No. 4, p.1082.

Google Scholar

[11] P. Kar and A. Choudhury: Sensors and Actuators B-Chemical, Vol. 183 (2013) No. 4, p.25.

Google Scholar

[12] Y.M. Xiao, J.Y. Lin, J.H. Wu, S.Y. Tai, G.T. Yue and T.W. Lin: Journal of Power Sources, Vol. 233 (2013) No. 1, p.320.

Google Scholar

[13] S. Haloi, P. Goswami and D.K. Das: Applied Clay Science, Vols. 77-78 (2013) No. 2, p.79.

Google Scholar

[14] Z.L. Wang, R. Guo, G.R. Li, H.L. Lu, Z.Q. Liu, F.M. Xiao, M.Q. Zhang and Y.X. Tong: Journal of Materials Chemistry, Vol. 22(2012) No. 6, p.2401.

Google Scholar

[15] K. Dong, F.X. Qiu, X.R. Guo, J.C. Xu, D.Y. Yang, and K.C. He: Journal of Applied Polymer Science, Vol. 129 (2013) No. 4, p.1697.

Google Scholar

[16] X. Cai, J.L. Zhang, Y. Ouyang, D. Ma, S.Z. Tan and Y.L. Peng: Langmuir, Vol. 29 (2013) No. 17, p.5279.

Google Scholar

[17] J.P. Zhang, H. Chen, and A.Q. Wang: European Polymer Journal, Vol. 42 (2006) No. 1, p.101.

Google Scholar

[18] Z.Q. Lei and S.X. Wen: European Polymer Journal, Vol. 44 (2008) No. 9, p.2845.

Google Scholar

[19] T. Chen, H.J. Wang, X.P. Zhang and N. Zheng: Acta Geologica Sinica-English Edition, Vol. 82 (2008) No. 2, p.385.

Google Scholar

[20] N. Frini-Srasra and E. Srasra: Surface Engineering and Applied Electrochemistry, Vol. 44 (2008) No. 4, p.43.

DOI: 10.3103/s1068375508010092

Google Scholar

[21] X.Q. Lei, Y.S. Liu and Z.X. Su: Polymer Composites, Vol. 29 (2008) No. 3, p.239.

Google Scholar

[22] Q.P. Guo, L.A. Xiang, J.Y. Huang, T.L. Chen and K.R. Wang: European Polymer Journal, Vol. 26 (1990) No. 3, p.355.

Google Scholar

[23] K. Gurunathan, A.V. Murugan, R. Marimuthu, U.P. Mulik and D.P. Amalnerkar: Materials Chemistry and Physics, Vol. 61 (1999) No. 3, p.173.

DOI: 10.1016/s0254-0584(99)00081-4

Google Scholar

[24] Q.P. Guo, L.A. Xiang, J.Y. Huang, T.L. Chen and K.R. Wang: European Polymer Journal, Vol. 26 (1990) No. 4, p.355.

Google Scholar

[25] W.B. Xu and P.S. He: Polymer Engineering & Science, Vol. 41 (2001) No. 11, p. (1903).

Google Scholar

[26] L.H. Wang and J. Sheng: Journal of Macromolecular Science Pure and Applied Chemistry, Vol. A40 (2003) No. 11, p.1135.

Google Scholar

[27] L. Shen, Y.J. Lin, Q.G. Du, W. Zhong and Y.L. Yang: Polymer, Vol. 46 (2005) No. 15, p.5758.

Google Scholar

[28] M. Narkis, Y. Haba, E. Segal, M. Zilberman, G.I. Titelman and A. Siegmann: Polymers for Advanced Technologies, Vol. 11 (2000) No. 8-12, p.665.

DOI: 10.1002/1099-1581(200008/12)11:8/12<665::aid-pat36>3.0.co;2-v

Google Scholar

[29] J.P. Zhang, H. Chen and A.Q. Wang: European Polymer Journal, Vol. 41 (2005) No. 10, p.2434.

Google Scholar

[30] L.H. Wang and J. Sheng: Polymer, Vol. 46 (2005) No. 15, p.6234.

Google Scholar

[31] L.H. Wang and J. Sheng: Journal Of Macromolecular Science-Physics, Vol. 44 (2005) No. 1, p.31.

Google Scholar