[1]
Yu, J., Kudo, A., Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater., 16, 2163-2169(2006).
DOI: 10.1002/adfm.200500799
Google Scholar
[2]
Tong, L., Iwase, A., Nattestad, A., Bach, U., Weidelener, M., Götz, G., Mishra, A., Bäuerle, P., Amal, R., Wallace, G. G., Mozer, A. J., Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device, Energy & Env. Sci., 5, 9472-9475(2012).
DOI: 10.1039/c2ee22866a
Google Scholar
[3]
Su, J., Guo, L., Bao, N., Grimes, C. A., Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano letters, 11, 1928-1933(2011).
DOI: 10.1021/nl2000743
Google Scholar
[4]
Zhang, M., Shao, C., Li, X., Zhang, P., Sun, Y., Su, C., Zhang, X., Ren, J., Liu, Y., Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light, Nanoscale, 4, 7501-7508(2012).
DOI: 10.1039/c2nr32213g
Google Scholar
[5]
Walsh, A., Yan, Y., Huda, M. N., Al-Jassim, M. M., Wei, S. H., Band edge electronic structure of BiVO4: elucidating the role of the Bis and Vd orbitals, Chem. Mater., 21, 547-551(2009).
DOI: 10.1021/cm802894z
Google Scholar
[6]
Sun, Y., Qu, B., Liu, Q., Gao, S., Yan, Z., Yan, W., Pan, B., Wei, S., Xie, Y., Highly efficient visible-light-driven photocatalytic activities in synthetic ordered monoclinic BiVO4 quantum tubes-graphene nanocomposites, Nanoscale, 4, 3761-3767(2012).
DOI: 10.1039/c2nr30371j
Google Scholar
[7]
Tokunaga, S., Kato, H., Kudo, A., Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater., 13, 4624-4628(2001).
DOI: 10.1021/cm0103390
Google Scholar
[8]
Li, G. Q., Bai, Y., Zhang, W. F., Difference in valence band top of BiVO4 with different crystal structure, Mater. Chem. Phys., 136, 930-934(2012).
DOI: 10.1016/j.matchemphys.2012.08.023
Google Scholar
[9]
Strobel, R., Metz, H. J., Pratsinis, S. E., Brilliant yellow, transparent pure, and SiO2-coated BiVO4 nanoparticles made in flames. Chem. Mater., 20, 6346-6351(2008).
DOI: 10.1021/cm800622a
Google Scholar
[10]
Saison, T., Chemin, N., Chanéac, C., Durupthy, O., Ruaux, V. r., Mariey, L., Maugé, F. o., Beaunier, P., Jolivet, J. -P., Bi2O3, BiVO4, and Bi2WO6: Impact of surface properties on photocatalytic activity under visible light, J. Phys. Chem. C, 115, 5657-5666(2011).
DOI: 10.1021/jp109134z
Google Scholar
[11]
Galembeck, A., Alves, O. L., Bismuth vanadate synthesis by metallo-organic decomposition: thermal decomposition study and particle size control, J. Mater. Sci., 37, 1923-1927(2002).
Google Scholar
[12]
Dunkle, S. S., Helmich, R. J., Suslick, K. S., BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis, J. Phys. Chem. C, 113, 11980-11983(2009).
DOI: 10.1021/jp903757x
Google Scholar
[13]
Wang, M., Liu, Q., Che, Y., Zhang, L., Zhang, D., Characterization and photocatalytic properties of N-doped BiVO4 synthesized via a sol–gel method, J. Alloys Compd., 548, 70-76(2013).
DOI: 10.1016/j.jallcom.2012.08.140
Google Scholar
[14]
Long, M., Cai, W., Cai, J., Zhou, B., Chai, X., Wu, Y., Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation, J. Phys. Chem. B, 110, 20211-6(2006).
DOI: 10.1002/chin.200704017
Google Scholar
[15]
Liu, Y., Ma, J., Liu, Z., Dai, C., Song, Z., Sun, Y., Fang, J., Zhao, J., Low-temperature synthesis of BiVO4 crystallites in molten salt medium and their UV–vis absorption, Ceram. Inter., 36, 2073-2077(2010).
DOI: 10.1016/j.ceramint.2010.06.003
Google Scholar
[16]
Fan, H. M., Wang, D. J., Wang, L. L., Li, H. Y., Wang, P., Jiang, T. F., Xie, T. F., Hydrothermal synthesis and photoelectric properties of BiVO4 with different morphologies: An efficient visible-light photocatalyst. Appl. Surf. Sci., 257, 7758-7762(2011).
DOI: 10.1016/j.apsusc.2011.04.025
Google Scholar
[17]
Ma, D. -K., Guan, M. -L., Liu, S. -S., Zhang, Y. -Q.; Zhang, C. -W.; He, Y. -X.; Huang, S. -M., Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity, Dalton Transactions, 41, 5581-5586(2012).
DOI: 10.1039/c2dt30099k
Google Scholar
[18]
Bierlein, J. D., Sleight, A. W., Ferroelasticity in BiVO4, Solid State Communications, 16, 69-70(1975).
DOI: 10.1016/0038-1098(75)90791-7
Google Scholar
[19]
Beg, S., Haneef, S., Al-Areqi, N. A. S., Study of electrical conductivity and phase transition in Bi2O3-V2O5 system, Phase Transitions, 83, 1114-1125(2010).
DOI: 10.1080/01411594.2010.509642
Google Scholar
[20]
Kudo, A., Omori, K., Kato, H., A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc., 121, 11459-11467(1999).
DOI: 10.1021/ja992541y
Google Scholar