[1]
P.G.W.A. Kompio, A. Bruckner, F. Hipler, G. Auer, E. Loffler and W. Grunert: A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2 catalysts for the selective reduction of NO with NH3. Journal of Catalysis, Vol. 286 (2012).
DOI: 10.1016/j.jcat.2011.11.008
Google Scholar
[2]
X.H. Li, H. Wang and C.Z. Yu, et al.: The Basic Properties of the Plate-type Catalysts: Chemical Industry and Engineering Progress, Vol. 31 (2013), p.147. (In Chinese).
Google Scholar
[3]
X. Wang: The Investigation of catalytic activity and Preparation Process of Plate-type SCR Catalyst (MS. Beijing Jiaotong University, China 2009), p.36. (In Chinese).
Google Scholar
[4]
C.Y. Zhang: The Investigation of catalytic activity and Preparation Process of Plate-type V2O5/TiO2 Catalyst (MS. Beijing University of Chemical Technology, China 2011), p.50. (In Chinese).
Google Scholar
[5]
J. R Li, Z. He, X.S. Shang, J.S. Chen, X.W. Yu and Y. J Yao, et al.: The study of SCR catalyst applying in Hg0 removal. Fuel Chemistry and Technology, Vol. 40 (2012) No. 2, p.241. (In Chinese).
Google Scholar
[6]
G.Q. Luo, J.J. Ma, J. Han, H. Yao, M.H. Xu, C. Zhang, G. Chen, Rajenda Gupta and Z.H. Xu: Hg occurrence in coal and its removal before coal utilization. Fuel, Vol. 104 (2013), p.70.
DOI: 10.1016/j.fuel.2010.04.004
Google Scholar
[7]
D. Pudasainee, S.J. Lee, S.H. Lee, J.H. Kim, H.N. Jang, S.J. Cho, T.C. Seo: Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plant. Fuel, Vol. 89 (2010) No. 4, p.804.
DOI: 10.1016/j.fuel.2009.06.022
Google Scholar
[8]
M. Rallo, B. Heidel, K. Brechtel and M.M. Maroto-Valer: Effect of SCR operation variables on mercury speciation. Chemical Engineering Journal, Vol. 198-199 (2012), p.87.
DOI: 10.1016/j.cej.2012.05.080
Google Scholar
[9]
S. Eswaran, H.G. Stenger: Effect of halogens on mercury conversion in SCR catalysts. Fuel Processing Technology, Vol. 89 (2008), p.1153.
DOI: 10.1016/j.fuproc.2008.05.007
Google Scholar
[10]
R. Stolle, H. Koser, H. Gutberlet: Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants. Applied Catalysts B: Environment, Vol. 144 (2014), p.486.
DOI: 10.1016/j.apcatb.2013.07.040
Google Scholar
[11]
W. Gao, Q.C. Liu, C.Y. Wu, H.L. Li, Y. Li, J. Yang and G.F. Wu: Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst. Chemical Engineering journal, Vol. 220 (2013), p.53.
DOI: 10.1016/j.cej.2013.01.062
Google Scholar
[12]
H.L. Li, Y. Li, C.Y. Wu and J.Y. Zhang: Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas. Chemical Engineering journal, Vol. 169 (2011), p.186.
DOI: 10.1016/j.cej.2011.03.003
Google Scholar
[13]
Q. Wan, L. Duan, J.H. Li, L. Chen, K.B. He and J.M. Hao: Deactivation performance and mechanism of alkali (earth) metals on V2O5–WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas. Catalysis Today, Vol. 75 (2011).
DOI: 10.1016/j.cattod.2011.03.011
Google Scholar
[14]
D. Yun, Q. Song and Q. Qiang, et al.: The analysis of V2O5-WO3/TiO2 catalyst deactivation mechanism. Coal Conversion, Vol. 32 (2009) No. 1, p.91.
Google Scholar
[15]
C.C. Yang, S.H. Chang, B.Z. Hong, K.H. Chi and M.B. Chang: Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5–WO3/TiO2-based catalysts. Chemosphere, Vol. 73 (2008), p.890.
DOI: 10.1016/j.chemosphere.2008.07.027
Google Scholar
[16]
E. Finocchio, G. Ramis, G. Busca: A study on catalytic combustion of chlorobenzenes. Catalysis Today, Vol. 169 (2011), p.3.
DOI: 10.1016/j.cattod.2010.10.097
Google Scholar
[17]
S. Chin, E. Park, M. Kim, G. N. Bae and J. Jurng: Effect of the spport material (TiO2) synthesis conditions in chemical vapor condensation on the catalytic oxidation for 1, 2-dichlorobenzene over V2O5/TiO2. Powedr Technology, Vol. 217 (2012).
DOI: 10.1016/j.powtec.2011.10.055
Google Scholar
[18]
Z.Z. Xu, S.B. Deng, Y. Yang, T,T. Zhang, Q.M. Cao, J. Huang and G. Yu: Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5–WO3/TiO2 catalyst. Chemosphere, Vol. 87 (2012), p.1032.
DOI: 10.1016/j.chemosphere.2012.01.004
Google Scholar
[19]
F. Bertinchamps, C. Gregoire and E.M. Gaigneaux: Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics: part II: influence of the nature and addition protocol of secondary phases to VOx/TiO2. Appl. Catal. B, Vol. 66(2006).
DOI: 10.1016/j.apcatb.2006.02.011
Google Scholar
[20]
D.P. Debecker, F. Bertinchamps, N. Blangenois, P. Eloy and E.M. Gaigneaux: On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins: Furan vs. chlorobenzene[J]. Appl. Catal. B, Vol. 74 (2007).
DOI: 10.1016/j.apcatb.2007.02.016
Google Scholar
[21]
D.P. Debecker, R. Delaigle, P. Eloy and E.M. Gaigneaux: Abatement of model molecules for dioxin total oxidation on V2O5–WO3/TiO2 catalysts: The case of substituted oxygen-containing VOC. Journal of Molecular Catalysis A: Chemical, Vol. 289 (2008).
DOI: 10.1016/j.molcata.2008.04.006
Google Scholar
[22]
D.P. Debecker, R. Delaigle and P.C. Hung, Alfons Buekens, Eric M. Gaigneaux and Moo Been Chang: Evaluation of PCDD/F oxidation catalysts: Confronting studies on modelmolecules with tests on PCDD/F-containing gas stream. Chemosphere, Vol. 82 (2011).
DOI: 10.1016/j.chemosphere.2010.12.007
Google Scholar
[23]
R. Weber, T. Sakurai and H. Hagenmaier: Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5–WO3 catalysts. Appl. Catal. B, Vol. 20 (1999), p.49.
DOI: 10.1016/s0926-3373(98)00115-5
Google Scholar
[24]
S.S. Ji, X.D. Li ,Y. Ren, T. Chen, K.F. Cen, M.J. Ni and A. Buekens: Ozone-enhanced oxidation of PCDD/Fs over V2O5–TiO2-based catalyst. Chemosphere, Vol. 92 (2013), p.265.
DOI: 10.1016/j.chemosphere.2013.01.087
Google Scholar
[25]
S.H. CHANG, K.H. CHI, C.W. YOUNG, B.Z. HONG and M.B. CHANG: Effect of Fly Ash on Catalytic Removal of Gaseous Dioxins over V2O5-WO3 Catalyst of a Sinter Plant. Environ. Sci. Technol, Vol. 43 (2009), p.7523.
DOI: 10.1021/es901647t
Google Scholar