Anisotropic Nanostructure ZnO Photoelectrodes for CdS/CdSe Quantum Dot Sensitized Solar Cells

Article Preview

Abstract:

CdS/CdSe quantum dots co-sensitized solar cells (QDSCs) were prepared by combining the successive ion layer absorption and reaction (SILAR) method and chemical bath deposition (CBD) method for the fabrication of CdS and CdSe quantum dots, respectively. In this work, we designed anisotropic nanostructure ZnO photoelectrodes, such as nanorods/nanosheets and nanorods array, for CdS/CdSe quantum dots co-sensitized solar cells. Our study revealed that the performance of QDSCs could be improved by modifying surface of ZnO to increase the loading of quantum dots and reduce the charge recombination.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

556-561

Citation:

Online since:

December 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Oregan, M. Gratzel, Nature, Vol. 353 (1991), p.737.

Google Scholar

[2] V. Gonzalez-Pedro, X. Xu, I. Mora-Sero, J. Bisquert, Acs Nano, Vol. 4 (2010), p.5783.

Google Scholar

[3] G. Zhu, L. Pan, T. Xu, Z. Sun, Acs Appl. Mater. Interfaces, Vol. 3 (2011), p.3146.

Google Scholar

[4] M.C. Hanna, A.J. Nozik, J. Appl. Phys., Vol. 100 (2006), p.074510.

Google Scholar

[5] L. -W. Chong, H. -T. Chien, Y. -L. Lee, J. Power Sources, Vol. 195 (2010), p.5109.

Google Scholar

[6] I. Zarazua, E. De la Rosa, T. Lopez-Luke, J. Reyes-Gomez, S. Ruiz, C. Angeles Chavez, J.Z. Zhang, J. Phys. Chem. C, Vol. 115 (2011), p.23209.

Google Scholar

[7] J.J. Tian, R. Gao, Q.F. Zhang, S.G. Zhang, Y.W. Li, J.L. Lan, X.H. Qu, G.Z. Cao, J. Phys. Chem. C, Vol. 116 (2012), p.18655.

Google Scholar

[8] T.P. Chou, Q.F. Zhang, G.E. Fryxell, G.Z. Cao, Adv. Mater., Vol. 19 (2007). p.2588.

Google Scholar

[9] Q.F. Zhang, G.Z. Cao, J. Mater. Chem., Vol. 21 (2011), p.6769.

Google Scholar

[10] Q.F. Zhang, T.R. Chou, B. Russo, S.A. Jenekhe, G.Z. Cao, Angew. Chem. Int. Ed., Vol. 47 (2008), p.2402.

Google Scholar

[11] M. Seol, H. Kim, Y. Tak, K. Yong, Chem. Commun., Vol. 46 (2010), p.5521.

Google Scholar

[12] M. Seol, E. Ramasamy, J. Lee, K. Yong, J. Phys. Chem. C, Vol. 115 (2011), p.22018.

Google Scholar

[13] C. -Z. Yao, B. -H. Wei, L. -X. Meng, H. Li, Q. -J. Gong, H. Sun, H. -X. Ma, X. -H. Hu, J. Power Sources, Vol. 207 (2012), p.222.

Google Scholar

[14] T. Bora, H.H. Kyaw, J. Dutta, Electrochim. Acta, Vol. 68 (2012), p.141.

Google Scholar

[15] J.J. Tian, Q.F. Zhang, L.L. Zhang, R. Gao, L.F. Shen, S.G. Zhang, X.H. Qu, G.Z. Cao, Nanoscale, Vol. 5 (2013), pp.936-943.

Google Scholar

[16] J.J. Tian, Q.F. Zhang, E. Uchaker, Z.Q. Liang, R. Gao, X.H. Qu, S.G. Zhang, G.Z. Cao, J. Mater. Chem. A, Vol. 1(2013), p.6770.

Google Scholar

[17] Z.L. Wang, Mater. Sci. Eng. R, Vol. 64 (2009), p.33.

Google Scholar

[18] S. Yodyingyong, X.Y. Zhou, Q.F. Zhang, D. Triampo, J.T. Xi, K. Park, B. Limketkai, G.Z. Cao, J. Phys. Chem. C, Vol. 114 (2010), p.21851.

DOI: 10.1021/jp1077888

Google Scholar