The Photocatalysis Properties of Heterostructured WO3-TiO2 Composite Prepared by Waste WC-TiC Hardmetal

Article Preview

Abstract:

We reported a facile hydrothermal route for the preparation of WO3TiO2 composite nanoparticles (TWCNs) using waste WC-TiC hardmetal in the presence of hydrofluoric acid (HF). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and nitrogen adsorption/desorption analysis were employed for structural and composition analyses of the TWCNs. Our results suggested that HF was not only strongly involved in the growth of WO3, but also played a critical role in the etching effect for TWCN product. The photocatalytic activity of TWCNs was investigated by UV-vis spectroscopy. Dye molecules could be rapidly decomposed with TWCNs photocatalyst under visible light illumination. The enhanced photocatalytic activity is attributed to well matched band edge positions of WO3 and TiO2, and the large specific surface area of TWCNs in view of the incorporation of mesopores. The results presented here are expected to make a contribution toward the development of recycling waste resource delicately for photocatalytic water purification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

603-611

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Fu, L.H. Cao and Y.S. Fan: Scripta Mater, Vol. 44 (2001), p.1061–1068.

Google Scholar

[2] H. Tong, S. X. Ouyang, Y. P. Bi, N. Umezawa, M. Oshikiri and J. H. Ye: Adv. Mater., Vol. 24 (2012), p.229–251.

DOI: 10.1002/adma.201102752

Google Scholar

[3] Y. Tachibana, L. Vayssieres and J. R. Durrant: Nat. Photonics, Vol. 6 (2012), p.511–518.

Google Scholar

[4] S. H. S. Chan, T. Y. Wu, J. C. Juan and C. Y. The: J. Chem. Technol. Biotechnol., Vol. 86 (2011), p.1130–1158.

Google Scholar

[5] S. G. Seo, C. Park, H. Kim, W. H. Nam, M. Jeong, Y. Choi, Y. S. Lim, W. Seo, S. Kim, J. Y. Lee and Y. S. Cho: J. Mater. Chem. A, Vol. 1 (2013), p.3639–3644.

Google Scholar

[6] B. Lu, X. Li, T. Wang, E. Xie and Z. Xu: J. Mater. Chem. A, Vol. 1 (2013), p.3900–3906.

Google Scholar

[7] M. Hojamberdiev, R. M. Prasad, K. Morita, Y. F. Zhu, M. A. Schiavon, A. Gurlo and R. Riedel: Appl. Catal., B: Environ., Vol. 115 (2012), p.303.

Google Scholar

[8] E. P. Reddy, L. Davydov and P. Smirniotis: Appl. Catal., B: Environ., Vol. 42 (2003)No. 1.

Google Scholar

[9] S. Higashimoto, Y. Ushiroda and M. Azuma: Top. Catal., Vol. 47 (2008), p.148.

Google Scholar

[10] L. I. Halaoui, N. M. Abrams and T. E. J. Mallouk: Phys. Chem. B, Vol. 109 (2005), p.6334.

Google Scholar

[11] H. D. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell and K. Kalantar-Zadeh: Adv. Funct. Mater., Vol. 21 (2011), p.2175.

DOI: 10.1002/adfm.201002477

Google Scholar

[12] L. Li, M. Krissanasaeranee, S. W. Pattinson, M. Stefik, U. Wiesner, U. Steiner and D. Eder: Chem. Commun., Vol. 46 (2010), p.7620.

DOI: 10.1039/c0cc01237h

Google Scholar

[13] G. R. Bamwenda and H. Arakawa: Appl. Catal. A, Vol. 210 (2001), p.181.

Google Scholar

[14] Z. H. Jiao, J. M. Wang, L. Ke, X. W. Sun and H. V. Demir: ACS Appl. Mater. Interfaces, Vol. 3 (2011), p.229.

Google Scholar

[15] T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko and A. Fujishima: Langmuir, Vol. 18 (2002), p.7777–7779.

DOI: 10.1021/la026011i

Google Scholar

[16] T. Tatsuma, S. Takeda, S. Saitoh, Y. Ohko and A. Fujishima: Electrochem. Commun., Vol. 5 (2003), p.793–796.

Google Scholar

[17] P. Ngaotrakanwiwat, T. Tatsuma, S. Saitoh, Y. Ohko and A. Fujishima: Phys. Chem. Chem. Phys., Vol. 5 (2003), p.3234–3237.

DOI: 10.1039/b304181f

Google Scholar

[18] T. Tatsuma, S. Saitoh, Y. Ohko and A. Fujishima: Chem. Mater., Vol. 13 (2001), p.2838–2842.

Google Scholar

[19] D. Zhao, C. Chen, C. Yu, W. Ma and J. Zhao: J. Phys. Chem. C, Vol. 113 (2009), p.13160–13165.

Google Scholar

[20] K. Hara, Z. Zhao, Y. Cui, M. Miyauchi, M. Miyashita and S. Mori: Langmuir, Vol. 27 (2011), p.12730–12736.

DOI: 10.1021/la201639f

Google Scholar

[21] V. Puddu, R. Mokaya and G.L. Puma: Chem. Commun., (2007), p.4749–4751.

Google Scholar

[22] H. Gomez, F. Orellana, H. Lizama, H.D. Mansilla and E.A. Dachiele: J. Chin. Chem. Soc., Vol. 51 (2006), p.1006–1009.

Google Scholar

[23] C. Shifu, C. Lei, G. Shen and C. Gengyu: Powder Technol., Vol. 160 (2005), p.198–202.

Google Scholar

[24] J.H. Pan and W.I. Lee: Chem. Mater., Vol. 18 (2006), p.847–853.

Google Scholar

[25] N. Couselo, F.S.G. Einschlag, R.J. Candal and M. Jobbagy: J. Phys. Chem. C, Vol. 112 (2008), p.1094–1100.

Google Scholar

[26] A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen and J. Zhang: Appl. Catal. B: Environ., Vol. 91 (2009), p.397–405.

Google Scholar

[27] D. Su, J. Wang, Y. Tang, C. Liu, L. Liu and X. Han: Chem. Commun., Vol. 47 (2011), p.4231–4233.

Google Scholar

[28] F. Wang, X. Chen, X. Hu, K.S. Wong and J.C. Yu: Sep. Purif. Technol., Vol. 91 (2012), p.67–72.

Google Scholar

[29] J. Mungkalasiri, L. Bedel, F. Emieux, J. Doré, F.N.R. Renaud and F. Maury: Surf. Coat. Tech., Vol. 204 (2009), p.887–892.

DOI: 10.1016/j.surfcoat.2009.07.015

Google Scholar

[30] Y.L. Ma, L. Zhang, X.F. Cao, X.T. Chen and Z.L. Xue: CrystEngComm, Vol. 12 (2010), pp.1153-1158.

Google Scholar

[31] H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna and P. Schmuki: Electrochem. Commun., Vol. 7 (2005), pp.295-298.

DOI: 10.1016/j.elecom.2005.01.003

Google Scholar