Advances in Biomaterial’s Modification and Thrombosis Inhibition

Article Preview

Abstract:

With the development of modern medical technology, the clinical range of biomaterial applications have gradually expanded. However, bioactivity on the surface of biomaterials may be reduced and induce thrombus formation that will not only cause serious dysfunction of the biological materials, but can also affect the host. Modification of these biological materials can thus help to retain the biological activity on the surface of the material and inhibit thrombus formation, which underlines the importance of their clinical application. The current review will address the modification of biomaterials and inhibition of thrombosis on the surface of biomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

635-641

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jordan S.W., Chaikof E. L: Novel thromboresistant materials. J Vasc Surg, Vol. 45A (2007) p.104–A115.

Google Scholar

[2] Kidane A.G., Salacinski H., Tiwari A., et al: Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces. Biomacromolecules, Vol. 5 (2004) p.798–813.

DOI: 10.1021/bm0344553

Google Scholar

[3] Kasimir M.T., Rieder E., Seebacher G., et al: Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis. Vol. 15 (2006) No. 2 pp.278-86.

Google Scholar

[4] Kasimir M.T., Weigel G., Sharma J., et al: The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation. Thromb Haemost, Vol. 94 (2005) pp.562-567.

DOI: 10.1160/th05-01-0025

Google Scholar

[5] Dohmen P.M., Ozaki S., Nitsch R., et al: A tissue engineered heart valve implanted in a juvenile sheep model. Med Sci Monit, Vol. 9 (2003) p. BR97-BR104.

Google Scholar

[6] Dohmen P.M., Lembcke A., Hotz H., et al: Ross operation with a tissue-engineered heart valve. Ann Thorac Surg, Vol. 74 (2002) pp.1438-1442.

DOI: 10.1016/s0003-4975(02)03881-x

Google Scholar

[7] Schopka S., Schmid T., Schmid C., et al: Current strategies in cardiovascular biomaterial functionalization. Materials, Vol. 3 (2010) pp.638-655.

DOI: 10.3390/ma3010638

Google Scholar

[8] Breuer C.K., Mettler B.A., Anthony T., et al: Application of tissue-engineering principlestoward the development of a semilunar heart valve substitute. Tissue Eng, Vol. 10 (2004) pp.1725-1736.

DOI: 10.1089/ten.2004.10.1725

Google Scholar

[9] Bordenave L., Fernandez P., Remy-Zolghadri M., et al: In vitro endothelialized ePTFE prostheses: Clinical update 20 years after the first realization. Clin Hemorheol Microcirc, Vol. 33 (2005) p.227–234.

Google Scholar

[10] Kleinman H.K., Philp D., Hoffman M.P.: Role of the extracellular matrix in morphogenesis. Current Opinion in Biotechnology, Vol. 14 (2003) No. 5 p.526–532.

DOI: 10.1016/j.copbio.2003.08.002

Google Scholar

[11] Shi J.W., Dong N.G., Sun Z.Q.: Immobilization of Decellularized Valve Scaffolds with Arg-Gly-Asp-containing Peptide to Promote Myofibroblast Adhesion. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 4 pp.503-507.

DOI: 10.1007/s11596-009-0422-8

Google Scholar

[12] Lutolf M.P., Hubbell J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, Vol. 23 (2005) p.47–55.

DOI: 10.1038/nbt1055

Google Scholar

[13] Dong X.C., Wei X.F., Yi W., et al: RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci: Mater Med, Vol. 20 (2009) pp.2327-2336.

DOI: 10.1007/s10856-009-3791-4

Google Scholar

[14] ]Hong H., Dong G.N., Shi W.J., et al: Fabrication of biomatrix/polymer hybrid scaffold for heart valve tissue engineering in vitro. ASAIO J, Nov-Dec Vol. 54(2008) No. 6 pp.627-632.

DOI: 10.1097/mat.0b013e31818965d3

Google Scholar

[15] DENG Cheng, DONG Nianguo, SHI Jiawei et al: The research of decelluarized valve scaffolds modified by polyethylene glycol microspheres loading transforming growth factor-β1J Clin Cardiol (China), Jan 2010, Vol 26, No1.

Google Scholar

[16] DONG Nian-guo,YE Xiao-feng,SUN Zong-quan et al: Experimental study on mechanical properties of decellularized porcine aortic valve and efects of preomti, g methods of biological scafold on histoeompafibility J Clin Cardiol (China), Jan 2010, Vol 26, No 1.

Google Scholar

[17] Hersel U., Dahmen C., Kessler H.: RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, Vol. 24 (2003) pp.4385-4415.

DOI: 10.1016/s0142-9612(03)00343-0

Google Scholar

[18] Li C.W., Zheng Q.X., Guo X.D., et al: Combined Use of RGD-peptide Modified PLGA and TGF-βl Gene Transfected MSCs to Improve Cell Biobehaviors in vitro. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 5 pp.592-598.

DOI: 10.1007/s11596-009-0512-7

Google Scholar

[19] Wang H., Ma L., Yang S.H., et al: Effect of RGD-modified Silk Material on the Adhesion and Proliferation of Bone Marrow-derived Mesenchymal Stem Cells. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 1 pp.80-83.

DOI: 10.1007/s11596-009-0117-1

Google Scholar

[20] Alobaid N., Salacinski H.J., Sales K.M., et al: Nanocomposite Containing Bioactive Peptides Promote Endothelialisation by Circulating Progenitor Cells: An In vitroEvaluation. European Journal of Vascular & Endovascular Surgery, Vol. 32 (2006).

DOI: 10.1016/j.ejvs.2005.11.034

Google Scholar

[21] Tran N.Q., Joung Y.K., Lih E., et al: RGD-conjugated In Situ forming hydrogels as cell-adhesive injectable scaffolds. Macromolecular Research, Vol. 19 (2011) No. 3 pp.300-306.

DOI: 10.1007/s13233-011-0309-y

Google Scholar

[22] Stegemann J.P., Kaszuba S.N., Rowe S.L.: Review: Advances in Vascular Tissue Engineering Using Protein-Based Biomaterials. Tissue Eng, Vol. 13 (2007) No. 11 p.2601–2613.

DOI: 10.1089/ten.2007.0196

Google Scholar

[23] Heilshorn S.C., DiZio K.A., Welsh E.R., et al: Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomaterials, Vol. 24 (2003) No. 23 p.4245–4252.

DOI: 10.1016/s0142-9612(03)00294-1

Google Scholar

[24] Shi J.W., Dong N.G., Sun Z.Q.: Immobilization of Decellularized Valve Scaffolds with Arg-Gly-Asp-containing Peptide to Promote Myofibroblast Adhesion. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 4 pp.503-507.

DOI: 10.1007/s11596-009-0422-8

Google Scholar

[25] Dong X.C., Wei X.F., Yi W., et al: RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci: Mater Med, Vol. 20 (2009) pp.2327-2336.

DOI: 10.1007/s10856-009-3791-4

Google Scholar

[26] Li C.W., Zheng Q.X., Guo X.D., et al: Combined Use of RGD-peptide Modified PLGA and TGF-βl Gene Transfected MSCs to Improve Cell Biobehaviors in vitro. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 5 pp.592-598.

DOI: 10.1007/s11596-009-0512-7

Google Scholar

[27] Wang H., Ma L., Yang S.H., et al: Effect of RGD-modified Silk Material on the Adhesion and Proliferation of Bone Marrow-derived Mesenchymal Stem Cells. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 1 pp.80-83.

DOI: 10.1007/s11596-009-0117-1

Google Scholar

[28] Hersel U., Dahmen C., Kessler H.: RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials, Vol. 24 (2003) pp.4385-4415.

DOI: 10.1016/s0142-9612(03)00343-0

Google Scholar

[29] Tran N.Q., Joung Y.K., Lih E., et al: RGD-conjugated In Situ forming hydrogels as cell-adhesive injectable scaffolds. Macromolecular Research, Vol. 19 (2011) No. 3 pp.300-306.

DOI: 10.1007/s13233-011-0309-y

Google Scholar

[30] Hatakeyama H., Kikuchi A., Yamato M., et al: Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation. Biomaterials, Vol. 27 (2006) No. 29 pp.5069-5078.

DOI: 10.1016/j.biomaterials.2006.05.019

Google Scholar

[31] Leung D.W., Cachines G., Kuang W.J., et al: Vascular endothelial growth factor issecreted angiogenic mitogen. Science, Vol. 246 (1989) p.1306.

DOI: 10.1126/science.2479986

Google Scholar

[32] Neufeld G., Cohen T., Stela G., et al: Vascular endothelial growth factor(VEGF) and itsreceptors. FASEB J, Vol. 13 (1999) pp.9-22.

Google Scholar

[33] Holmes K., Roberts O.L., Thomas A,M., et al: Vascular endothelial growth factor receptor-2: structure,function,intracellular signaling and therapeutic inhibition.Cell Signal, Vol. 19 (2007) No. 10 p.2003~(2012).

DOI: 10.1016/j.cellsig.2007.05.013

Google Scholar

[34] Knetsch M.L.W., Koole L.H.: VEGF-E enhances endothelialization and inhibits thrombus formation on polymeric surfaces. Journal of Biomedical Materials Research, Vol. 93A (2010) No. 1 pp.77-85.

DOI: 10.1002/jbm.a.32538

Google Scholar

[35] Müller S., Koenig G., Charpiot A., et al: VEGF-Functionalized Polyelectrolyte Multilayers as Proangiogenic Prosthetic Coatings. Advance Functional Materials, Vol. 18 (2008) No. 12 pp.1767-1775.

DOI: 10.1002/adfm.200701233

Google Scholar

[36] Shen Y.H., Shoichet M.S., Radisic M.: Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomaterialia, Vol. 4 (2008) pp.477-489.

DOI: 10.1016/j.actbio.2007.12.011

Google Scholar

[37] Poter A.M., Klinge C.M., Gobin A.S.: Biomimetic Hydrogels with VEGF induce angiogenic processes in both hUVEC and hMEC. Biomacromolecules, Vol. 12 (2011) pp.242-246.

DOI: 10.1021/bm101220b

Google Scholar

[38] Zisch A.H., Lutolf M.P., Ehrbar M., et al: Cell-demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for vascularized tissue growth. FASEB J, Vol. 17 (2003) p.2260–2262.

DOI: 10.1096/fj.02-1041fje

Google Scholar

[39] Poh C.K., Shi Z.L., Lim T.Y., et al: The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials, Vol. 31 (2010) No. 7 pp.1578-1585.

DOI: 10.1016/j.biomaterials.2009.11.042

Google Scholar

[40] Leach . LK., Kaigle D., Wang Z., et al: Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials, Vol. 27 (2006) No. 17 pp.3249-3255.

DOI: 10.1016/j.biomaterials.2006.01.033

Google Scholar

[41] Walpoth B.H., Zammaretti P., Cikirikcioglu M., et al: Enhanced intimal thickening of expanded polytetrafluoroethylene grafts coated with fibrin or fibrin-releasing vascular endothelial growth factor in the pig carotid artery interposition model. J Thorac CardioVasc Surg, Vol. 133 (2007).

DOI: 10.1016/j.jtcvs.2007.01.029

Google Scholar

[42] Bunting S., Moncada S., Vane J.R.: Antithrombotic properties of vascular endothelium. Lancet, Vol. 2 (1977) p.1075–1076.

DOI: 10.1016/s0140-6736(77)91906-7

Google Scholar

[43] De Mel A., Jell G., Stevens M.M., et al: Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules, Vol. 9 (2008) p.2969–2679.

DOI: 10.1021/bm800681k

Google Scholar

[44] Melero-Martin J.M., Khan Z.A., Picard A., et al: In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood, Vol. 109 (2007) p.4761–4768.

DOI: 10.1182/blood-2006-12-062471

Google Scholar

[45] Rothmans J.I., Heyligers J.M.M., Stroes E.S.G., et al: Endothelial progenitor cell-seeded grafts: Rash and risky. Can J Cardiol, Vol. 22 (2006) p.929–932.

DOI: 10.1016/s0828-282x(06)70311-7

Google Scholar

[46] Dohmen P.M., Lembcke A., Hotz H., et al: Ross operation with a tissue-engineered heart valve. Ann Thorac Surg, Vol. 74 (2002) pp.1438-1442.

DOI: 10.1016/s0003-4975(02)03881-x

Google Scholar

[47] Schmidt D., Breymann C., Weber A., et al: Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg, Vol. 78 (2004) p.2094-(2098).

DOI: 10.1016/j.athoracsur.2004.06.052

Google Scholar

[48] Schmidt D., Mol A., Neuenschwander S., et al: Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg, Vol. 27 (2005) pp.795-800.

DOI: 10.1016/j.ejcts.2005.01.064

Google Scholar

[49] Kaushal S., Amiel G.E., Guleserian K.J., et al: Functional small diameter neovessels created using endothelial progenitor cells expanded in vivo. Nat Med, Vol. 7 (2001) pp.1035-1040.

DOI: 10.1038/nm0901-1035

Google Scholar

[50] Avci-Adali M., Paul A., Ziemer G., et al: New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialization of blood contacting materials. Biomaterials, Vol. 29 (2008) p.3936–3945.

DOI: 10.1016/j.biomaterials.2008.07.002

Google Scholar

[51] Rodenberg E.J., Pavalko F.M.: Peptides Derived from Fibronectin Type III Connecting Segments Promote Endothelial Cell Adhesion but Not Platelet Adhesion: Implications in Tissue-Engineered Vascular Grafts. Tissue Eng, Vol. 13 (2007).

DOI: 10.1089/ten.2007.0037

Google Scholar

[52] Moncada S., Palmer R.M., Higgs E.A.: The discovery of nitric oxide as the endogenous nitrovasodilator. Lancet, Vol. 2 (1987) p.1057–1058.

Google Scholar

[53] Lev E.I., Estrov Z., Aboulfatova K., et al: Potential role of activated platelets in homing of human endothelial progenitor cells to subendothelial matrix. Thromb Haemost, Vol. 96(2006) p.498–504.

DOI: 10.1160/th06-05-0250

Google Scholar