[1]
Jordan S.W., Chaikof E. L: Novel thromboresistant materials. J Vasc Surg, Vol. 45A (2007) p.104–A115.
Google Scholar
[2]
Kidane A.G., Salacinski H., Tiwari A., et al: Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces. Biomacromolecules, Vol. 5 (2004) p.798–813.
DOI: 10.1021/bm0344553
Google Scholar
[3]
Kasimir M.T., Rieder E., Seebacher G., et al: Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis. Vol. 15 (2006) No. 2 pp.278-86.
Google Scholar
[4]
Kasimir M.T., Weigel G., Sharma J., et al: The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation. Thromb Haemost, Vol. 94 (2005) pp.562-567.
DOI: 10.1160/th05-01-0025
Google Scholar
[5]
Dohmen P.M., Ozaki S., Nitsch R., et al: A tissue engineered heart valve implanted in a juvenile sheep model. Med Sci Monit, Vol. 9 (2003) p. BR97-BR104.
Google Scholar
[6]
Dohmen P.M., Lembcke A., Hotz H., et al: Ross operation with a tissue-engineered heart valve. Ann Thorac Surg, Vol. 74 (2002) pp.1438-1442.
DOI: 10.1016/s0003-4975(02)03881-x
Google Scholar
[7]
Schopka S., Schmid T., Schmid C., et al: Current strategies in cardiovascular biomaterial functionalization. Materials, Vol. 3 (2010) pp.638-655.
DOI: 10.3390/ma3010638
Google Scholar
[8]
Breuer C.K., Mettler B.A., Anthony T., et al: Application of tissue-engineering principlestoward the development of a semilunar heart valve substitute. Tissue Eng, Vol. 10 (2004) pp.1725-1736.
DOI: 10.1089/ten.2004.10.1725
Google Scholar
[9]
Bordenave L., Fernandez P., Remy-Zolghadri M., et al: In vitro endothelialized ePTFE prostheses: Clinical update 20 years after the first realization. Clin Hemorheol Microcirc, Vol. 33 (2005) p.227–234.
Google Scholar
[10]
Kleinman H.K., Philp D., Hoffman M.P.: Role of the extracellular matrix in morphogenesis. Current Opinion in Biotechnology, Vol. 14 (2003) No. 5 p.526–532.
DOI: 10.1016/j.copbio.2003.08.002
Google Scholar
[11]
Shi J.W., Dong N.G., Sun Z.Q.: Immobilization of Decellularized Valve Scaffolds with Arg-Gly-Asp-containing Peptide to Promote Myofibroblast Adhesion. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 4 pp.503-507.
DOI: 10.1007/s11596-009-0422-8
Google Scholar
[12]
Lutolf M.P., Hubbell J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, Vol. 23 (2005) p.47–55.
DOI: 10.1038/nbt1055
Google Scholar
[13]
Dong X.C., Wei X.F., Yi W., et al: RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci: Mater Med, Vol. 20 (2009) pp.2327-2336.
DOI: 10.1007/s10856-009-3791-4
Google Scholar
[14]
]Hong H., Dong G.N., Shi W.J., et al: Fabrication of biomatrix/polymer hybrid scaffold for heart valve tissue engineering in vitro. ASAIO J, Nov-Dec Vol. 54(2008) No. 6 pp.627-632.
DOI: 10.1097/mat.0b013e31818965d3
Google Scholar
[15]
DENG Cheng, DONG Nianguo, SHI Jiawei et al: The research of decelluarized valve scaffolds modified by polyethylene glycol microspheres loading transforming growth factor-β1J Clin Cardiol (China), Jan 2010, Vol 26, No1.
Google Scholar
[16]
DONG Nian-guo,YE Xiao-feng,SUN Zong-quan et al: Experimental study on mechanical properties of decellularized porcine aortic valve and efects of preomti, g methods of biological scafold on histoeompafibility J Clin Cardiol (China), Jan 2010, Vol 26, No 1.
Google Scholar
[17]
Hersel U., Dahmen C., Kessler H.: RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, Vol. 24 (2003) pp.4385-4415.
DOI: 10.1016/s0142-9612(03)00343-0
Google Scholar
[18]
Li C.W., Zheng Q.X., Guo X.D., et al: Combined Use of RGD-peptide Modified PLGA and TGF-βl Gene Transfected MSCs to Improve Cell Biobehaviors in vitro. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 5 pp.592-598.
DOI: 10.1007/s11596-009-0512-7
Google Scholar
[19]
Wang H., Ma L., Yang S.H., et al: Effect of RGD-modified Silk Material on the Adhesion and Proliferation of Bone Marrow-derived Mesenchymal Stem Cells. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 1 pp.80-83.
DOI: 10.1007/s11596-009-0117-1
Google Scholar
[20]
Alobaid N., Salacinski H.J., Sales K.M., et al: Nanocomposite Containing Bioactive Peptides Promote Endothelialisation by Circulating Progenitor Cells: An In vitroEvaluation. European Journal of Vascular & Endovascular Surgery, Vol. 32 (2006).
DOI: 10.1016/j.ejvs.2005.11.034
Google Scholar
[21]
Tran N.Q., Joung Y.K., Lih E., et al: RGD-conjugated In Situ forming hydrogels as cell-adhesive injectable scaffolds. Macromolecular Research, Vol. 19 (2011) No. 3 pp.300-306.
DOI: 10.1007/s13233-011-0309-y
Google Scholar
[22]
Stegemann J.P., Kaszuba S.N., Rowe S.L.: Review: Advances in Vascular Tissue Engineering Using Protein-Based Biomaterials. Tissue Eng, Vol. 13 (2007) No. 11 p.2601–2613.
DOI: 10.1089/ten.2007.0196
Google Scholar
[23]
Heilshorn S.C., DiZio K.A., Welsh E.R., et al: Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomaterials, Vol. 24 (2003) No. 23 p.4245–4252.
DOI: 10.1016/s0142-9612(03)00294-1
Google Scholar
[24]
Shi J.W., Dong N.G., Sun Z.Q.: Immobilization of Decellularized Valve Scaffolds with Arg-Gly-Asp-containing Peptide to Promote Myofibroblast Adhesion. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 4 pp.503-507.
DOI: 10.1007/s11596-009-0422-8
Google Scholar
[25]
Dong X.C., Wei X.F., Yi W., et al: RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci: Mater Med, Vol. 20 (2009) pp.2327-2336.
DOI: 10.1007/s10856-009-3791-4
Google Scholar
[26]
Li C.W., Zheng Q.X., Guo X.D., et al: Combined Use of RGD-peptide Modified PLGA and TGF-βl Gene Transfected MSCs to Improve Cell Biobehaviors in vitro. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 5 pp.592-598.
DOI: 10.1007/s11596-009-0512-7
Google Scholar
[27]
Wang H., Ma L., Yang S.H., et al: Effect of RGD-modified Silk Material on the Adhesion and Proliferation of Bone Marrow-derived Mesenchymal Stem Cells. J Huazhong Univ Sci Technol, Vol. 29 (2009) No. 1 pp.80-83.
DOI: 10.1007/s11596-009-0117-1
Google Scholar
[28]
Hersel U., Dahmen C., Kessler H.: RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials, Vol. 24 (2003) pp.4385-4415.
DOI: 10.1016/s0142-9612(03)00343-0
Google Scholar
[29]
Tran N.Q., Joung Y.K., Lih E., et al: RGD-conjugated In Situ forming hydrogels as cell-adhesive injectable scaffolds. Macromolecular Research, Vol. 19 (2011) No. 3 pp.300-306.
DOI: 10.1007/s13233-011-0309-y
Google Scholar
[30]
Hatakeyama H., Kikuchi A., Yamato M., et al: Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation. Biomaterials, Vol. 27 (2006) No. 29 pp.5069-5078.
DOI: 10.1016/j.biomaterials.2006.05.019
Google Scholar
[31]
Leung D.W., Cachines G., Kuang W.J., et al: Vascular endothelial growth factor issecreted angiogenic mitogen. Science, Vol. 246 (1989) p.1306.
DOI: 10.1126/science.2479986
Google Scholar
[32]
Neufeld G., Cohen T., Stela G., et al: Vascular endothelial growth factor(VEGF) and itsreceptors. FASEB J, Vol. 13 (1999) pp.9-22.
Google Scholar
[33]
Holmes K., Roberts O.L., Thomas A,M., et al: Vascular endothelial growth factor receptor-2: structure,function,intracellular signaling and therapeutic inhibition.Cell Signal, Vol. 19 (2007) No. 10 p.2003~(2012).
DOI: 10.1016/j.cellsig.2007.05.013
Google Scholar
[34]
Knetsch M.L.W., Koole L.H.: VEGF-E enhances endothelialization and inhibits thrombus formation on polymeric surfaces. Journal of Biomedical Materials Research, Vol. 93A (2010) No. 1 pp.77-85.
DOI: 10.1002/jbm.a.32538
Google Scholar
[35]
Müller S., Koenig G., Charpiot A., et al: VEGF-Functionalized Polyelectrolyte Multilayers as Proangiogenic Prosthetic Coatings. Advance Functional Materials, Vol. 18 (2008) No. 12 pp.1767-1775.
DOI: 10.1002/adfm.200701233
Google Scholar
[36]
Shen Y.H., Shoichet M.S., Radisic M.: Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomaterialia, Vol. 4 (2008) pp.477-489.
DOI: 10.1016/j.actbio.2007.12.011
Google Scholar
[37]
Poter A.M., Klinge C.M., Gobin A.S.: Biomimetic Hydrogels with VEGF induce angiogenic processes in both hUVEC and hMEC. Biomacromolecules, Vol. 12 (2011) pp.242-246.
DOI: 10.1021/bm101220b
Google Scholar
[38]
Zisch A.H., Lutolf M.P., Ehrbar M., et al: Cell-demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for vascularized tissue growth. FASEB J, Vol. 17 (2003) p.2260–2262.
DOI: 10.1096/fj.02-1041fje
Google Scholar
[39]
Poh C.K., Shi Z.L., Lim T.Y., et al: The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials, Vol. 31 (2010) No. 7 pp.1578-1585.
DOI: 10.1016/j.biomaterials.2009.11.042
Google Scholar
[40]
Leach . LK., Kaigle D., Wang Z., et al: Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials, Vol. 27 (2006) No. 17 pp.3249-3255.
DOI: 10.1016/j.biomaterials.2006.01.033
Google Scholar
[41]
Walpoth B.H., Zammaretti P., Cikirikcioglu M., et al: Enhanced intimal thickening of expanded polytetrafluoroethylene grafts coated with fibrin or fibrin-releasing vascular endothelial growth factor in the pig carotid artery interposition model. J Thorac CardioVasc Surg, Vol. 133 (2007).
DOI: 10.1016/j.jtcvs.2007.01.029
Google Scholar
[42]
Bunting S., Moncada S., Vane J.R.: Antithrombotic properties of vascular endothelium. Lancet, Vol. 2 (1977) p.1075–1076.
DOI: 10.1016/s0140-6736(77)91906-7
Google Scholar
[43]
De Mel A., Jell G., Stevens M.M., et al: Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules, Vol. 9 (2008) p.2969–2679.
DOI: 10.1021/bm800681k
Google Scholar
[44]
Melero-Martin J.M., Khan Z.A., Picard A., et al: In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood, Vol. 109 (2007) p.4761–4768.
DOI: 10.1182/blood-2006-12-062471
Google Scholar
[45]
Rothmans J.I., Heyligers J.M.M., Stroes E.S.G., et al: Endothelial progenitor cell-seeded grafts: Rash and risky. Can J Cardiol, Vol. 22 (2006) p.929–932.
DOI: 10.1016/s0828-282x(06)70311-7
Google Scholar
[46]
Dohmen P.M., Lembcke A., Hotz H., et al: Ross operation with a tissue-engineered heart valve. Ann Thorac Surg, Vol. 74 (2002) pp.1438-1442.
DOI: 10.1016/s0003-4975(02)03881-x
Google Scholar
[47]
Schmidt D., Breymann C., Weber A., et al: Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg, Vol. 78 (2004) p.2094-(2098).
DOI: 10.1016/j.athoracsur.2004.06.052
Google Scholar
[48]
Schmidt D., Mol A., Neuenschwander S., et al: Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg, Vol. 27 (2005) pp.795-800.
DOI: 10.1016/j.ejcts.2005.01.064
Google Scholar
[49]
Kaushal S., Amiel G.E., Guleserian K.J., et al: Functional small diameter neovessels created using endothelial progenitor cells expanded in vivo. Nat Med, Vol. 7 (2001) pp.1035-1040.
DOI: 10.1038/nm0901-1035
Google Scholar
[50]
Avci-Adali M., Paul A., Ziemer G., et al: New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialization of blood contacting materials. Biomaterials, Vol. 29 (2008) p.3936–3945.
DOI: 10.1016/j.biomaterials.2008.07.002
Google Scholar
[51]
Rodenberg E.J., Pavalko F.M.: Peptides Derived from Fibronectin Type III Connecting Segments Promote Endothelial Cell Adhesion but Not Platelet Adhesion: Implications in Tissue-Engineered Vascular Grafts. Tissue Eng, Vol. 13 (2007).
DOI: 10.1089/ten.2007.0037
Google Scholar
[52]
Moncada S., Palmer R.M., Higgs E.A.: The discovery of nitric oxide as the endogenous nitrovasodilator. Lancet, Vol. 2 (1987) p.1057–1058.
Google Scholar
[53]
Lev E.I., Estrov Z., Aboulfatova K., et al: Potential role of activated platelets in homing of human endothelial progenitor cells to subendothelial matrix. Thromb Haemost, Vol. 96(2006) p.498–504.
DOI: 10.1160/th06-05-0250
Google Scholar