Post-Processing of Chitosan Based Nanofibers Prepared by Electrospinning

Article Preview

Abstract:

Recently, electrospinning of nanofibers based on chitosan has been widely studied and numerous chitosan based nanofibers have been prepared, for the enormous possibilities of applications in various areas such as filtration, enzyme immobilization, tissue engineering, wound dressing, drug delivery, and catalysis. Because most of the chitosan based nanofibers are soluble in aqueous solutions and the other properties such as mechanical properties are not suitable for the further applications. It is necessary to improve the properties of chitosan based nanofibers. Various post-processing has been done to the chitosan based nanofibers and many post-processing products have emerged. This article discusses the post-processing of the chitosan based nanofibers involving methods, mechanisms, changes of nanofiber properties, and applications of the post-processing products in details. The post-processing is divided into alkali treatment, crosslinking, and functionalizing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

652-662

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Formhals: US Patent, USA, 1975504, (1934).

Google Scholar

[2] Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna: Compos. Sc. and Technol. Vol. 63 (2003) No. 15, P. 2223.

Google Scholar

[3] G. Taylor: Proc. R. Soc. London Ser. A. Vol. 280 (1964) No. 1382, P. 383.

Google Scholar

[4] Y. M. Shin, M. M. Hohman, M. P. Brenner and G. C. Rutledge: Polymer, Vol. 42 (2001) No. 25, P. 09955.

Google Scholar

[5] J. Doshi and D. H. Reneker: J. Electrostatics, Vol. 35 (1995) No. 2-3, P. 151.

Google Scholar

[6] J. M. Deitzel, J. Kleinmeyer, D. Harris and B. N. C. Tan: Polymer, Vol. 42 (2001) No. 1, P. 261.

Google Scholar

[7] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen and B. N. C. Tan: Polymer, Vol. 42 (2001) No. 19, P. 8163.

Google Scholar

[8] A. Frenot and I. S. Chronakis: Curr. Opin. Colloid Interface Sci. Vol. 8 (2003) No. 1, P. 64.

Google Scholar

[9] M. T. Hunley and T. E. Long: Polym. Int. Vol. 57 (2008) No. 3, P. 385.

Google Scholar

[10] M. Rinaudo: Prog. Polym. Sci. Vol. 31 (2006) No. 7, P. 603.

Google Scholar

[11] F. L. Mi, Y. C. Tan, H. F. Liang and H. S. Sung: Biomaterials, Vol. 23 (2002) No. 1, P. 181.

Google Scholar

[12] N. Angelova, N. Manolova, I. Rashkov, V. Maximova, S. Bogdanova and A. Domard: J. Bioact. Compat. Polym. Vol. 10 (1995) No. 4, P. 285.

Google Scholar

[13] E. Selmer-Olsen, H. C. Ratnaweera and R. Pehrson: Water Sci. Technol. Vol. 34 (1996) No. 11, P. 33.

Google Scholar

[14] B. M. Min, S. W. Lee, J. N. Lim, Y. You, T. S. Lee, P. H. Kang and W. H. Park: Polymer, Vol. 45 (2004) No. 21, P. 7137.

Google Scholar

[15] K. Ohkawa, D. Cha, H. Kim, A. Nishida and H. Yamamoto: Macromol. Rapid. Commun. Vol. 25 (2004) No. 18, P. 1600.

DOI: 10.1002/marc.200400253

Google Scholar

[16] K. Ohkawa, K. I Minato., G. Kumagai, S. Hayashi and H. Yamamoto: Biomacromolecules, Vol. 7 (2006) No. 11, P. 3291.

Google Scholar

[17] M. Hasegawa, A. Isogai, F. Onabe and M. Usuda: J. Appl. Polym. Sci. Vol. 45 (1992) No. 10, P. 1857.

Google Scholar

[18] H. Homoyoni, S. A. H. Ravandi and M. Valizadeh: Carbohydr. Polym. Vol. 77 (2009) No. 3, P. 656.

Google Scholar

[19] Y. Y. Zhang, X. B. Huang, B. Duan, L. L. Wu, S. Li and X. Y. Yuan: Colloid Polym. Sci. Vol. 285 (2007) No. 8, P. 855.

Google Scholar

[20] M. Pakravan, M. C. Heuzey and A. Ajji: Polymer, Vol. 52 (2011) No. 21, P. 4813.

Google Scholar

[21] B. Veleirinho, F. V. Berti, P. F. Dias, M. Maraschin, R. M. Ribeiro-do-Valle, A. José and J. A. Lopes-da-Silva: Mater. Sci. Eng. C. Vol. 33 (2013) No. 1, P. 37.

Google Scholar

[22] L. V. Schueren, I. Steyaert, B. D. Schoenmaker and D. ClercK: Carbohyd. Polym. Vol. 88 (2012) No. 4, P. 1221.

Google Scholar

[23] K. T. Shalumon, D. Sathish, S. V. Nair, K. P. Chennazhi, H. Tamura and R. Jayakumar: J. Biomed. Nanotechnol. Vol. 8 (2012) No. 3, P. 405.

Google Scholar

[24] F. Chen, X. Q. Li, X. M. Mo, C. L. He, H. S. Wang and Y. Ikada: J. biomater. sci. Polym. edition, Vol. 19 (2008) No. 5, P. 677.

Google Scholar

[25] B. Veleirinho, D. S. Coelho, P. F. Dias M., Maraschin, R. M. Ribeiro-do-Valle and J. A. Lopes-da-Silva: Int. J Biol. Macromol. Vol. 51 (2012) No. 4, P. 343.

DOI: 10.1016/j.ijbiomac.2012.05.023

Google Scholar

[26] R. Nirmala, R. Navamathavan, M. H. El-Newehy and H. Y. Kim: Mater. Lett. Vol. 65 (2011) No. 3, P. 493.

Google Scholar

[27] Z. G. Chen, B. Wei, X. M. Mo and F. Z. Cui: J. Polym. Sci. Pol. Phys. Vol. 47 (2009) No. 19, P. (1949).

Google Scholar

[28] Z. X. Cai, X. M. Mo, K. H. Zhang, L. P. Fan, A. L. Yin, C. L. He and H. S. Wang: Int. J. Mol. Sci. Vol. 11 (2010) No. 9, P. 3529.

Google Scholar

[29] S. Torres-Giner, M. J. Ocio and J. M. Lagaron: Carbohyd. Polym. Vol. 77 (2009) No. 2, P. 261.

Google Scholar

[30] Z. Q. Feng, X. Chu, N. P. Huang, T. Wang, Y. C. Wang, X. L. Shi, Y. T. Ding and Z. Z. Gu: Biomaterials, Vol. 30 (2009) No. 14, P. 2753.

Google Scholar

[31] A. Neamnark, R. Rujiravanit and P. Supaphol: Carbohyd. Polym. Vol. 66 (2006) No. 3, P. 298.

Google Scholar

[32] J. Han, J. F. Zhang, R. X. Yin, G. P. Ma, D. Z. Yang and J. Nie: Carbohyd. Polym. Vol. 83 (2011) No. 1, P. 270.

Google Scholar

[33] Y. S. Zhou, D. Z. Yang, X. M. Chen, Q. Xu, F. M. Lu and J. Nie: Biomacromolecules, Vol. 9 (2008) No. 1, P. 349.

Google Scholar

[34] K. R. Duan, H. L. Chen, J. Huang, J. H. Yu, S. Y. Liu, D. X. Wang and Y. P. Li: Carbohyd. Polym. Vol. 80 (2010) No. 2, P. 498.

Google Scholar

[35] W. K. Chang, G. P. Ma, D. Z. Yang, D. D. Su and J. Nie: J. Appl. Polym. Sci. Vol. 117 (2010) No. 4, P. 2113.

Google Scholar

[36] M. Skotak, A. P Leonov., G. Larsen, S. Noriega and A. Subramanian: Biomacromolecules, Vol. 9 (2008) No. 7, P. (1902).

Google Scholar

[37] Y. Z. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su and C. T. Lim: Biomaterials, Vol. 29 (2008) No. 32, P. 4314.

DOI: 10.1016/j.biomaterials.2008.07.038

Google Scholar

[38] A. T. Hang, B. Tae and J. S. Park: Carbohyd. Polym. Vol. 82 (2010) No. 2, P. 472.

Google Scholar

[39] Y. H. Zhao, Y. Zhou, X. M. Wu, L. Wang, L. Xu and S. C. Wei: Appl. Surf. Sci. Vol. 258 (2012) No. 22, P. 8867.

Google Scholar

[40] J. X. Yu and T. Q. Liu: Mater. Sci. Forum. Vol. 620-622 (2009) P. 537.

Google Scholar

[41] K. Sun and Z. H. Li: Express Polym. Lett. Vol. 5 (2011) No. 4, P. 342.

Google Scholar

[42] P. Sangsanoh and P. Supaphol: Biomacromolecules, Vol. 7 (2006) No. 10, P. 2710.

Google Scholar

[43] J. D. Schiffman, L. A. Stulga and C. L. Schauer: Polym. Eng. Sci. Vol. 49 (2009) No. 10, P. (1918).

Google Scholar

[44] S. Haider and S. Y. Park: J. Membr. Sci. Vol. 328 (2009) No. 1-2, P. 90.

Google Scholar

[45] W. S. Wan Ngah, C. S. Endud and R. Mayanar: React. Funct. Polym. Vol. 50 (2002) No. 2, P. 181.

Google Scholar

[46] C. Huang, Y. C. Chung and M. R. Liou: J. Hazard. Mater. Vol. 45 (1996) No. 2-3, P. 265.

Google Scholar

[47] A. Matsuda, G. Kagata, R. Kino and J. Tanaka: J. Nanosci. Nanotechno. Vol. 7 (2007) No. 3, P. 852.

Google Scholar

[48] J. P. Chen, S. H. Chen and G. J. Lai: Nanoscale Res. Lett. Vol. 7 (2012) No. 1, P. 170.

Google Scholar

[49] B. Zuo, L. Liu and Z. Wu: J. Appl. Polym. Sci. Vol. 106 (2007) No. 1, P. 53.

Google Scholar

[50] L. Li and Y. L. Hsieh: Carbohyd. Res. Vol. 341 (2006) No. 3, P. 374.

Google Scholar

[51] X. J. Huang, D. Ge and Z. K. Xu: Eur. Polym. J. Vol. 43 (2007) No. 9, P. 3710.

Google Scholar

[52] E. R. Welsh, C. L. Schauer, S. B. Qadri and R. R. Price: Biomacromolecules, Vol. 3 (2002) No. 6, P. 1370.

Google Scholar

[53] F. S. Ligler, B. M. Lingerfelt, R. P. Price and P. E. Schoen: Langmuir, Vol. 17 (2001) No. 16, P. 5082.

Google Scholar

[54] Y. C. Wei, S. M. Hudson, J. M. Mayer and D. L. Kaplan: J. Polym. Sci. Pol. Chem. Vol. 30 (1992) No. 10, P. 2187.

Google Scholar

[55] S. R. Jameela and A. Jayakrishnan: Biomaterials, Vol. 16 (1995) No. 10, P. 769.

Google Scholar

[56] C. Tual, E. Espuche, M. Escoubes and A. Domard: J. Polym. Sci. Pol. Phys. Vol. 38 (2000) No. 11, P. 1521.

DOI: 10.1002/(sici)1099-0488(20000601)38:11<1521::aid-polb120>3.0.co;2-#

Google Scholar

[57] Y. Koyama and A. Taniguchi: J. Appl. Polym. Sci. Vol. 31 (1986) No. 6, P. (1951).

Google Scholar

[58] J. D. Schiffman and C. L. Schauer: Biomacromolecules, Vol. 8 (2007) No. 2, P. 594.

Google Scholar

[59] J. D. Schiffman and C. L. Schauer: Biomacromolecules, Vol. 8 (2007) No. 9, P. 2665.

Google Scholar

[60] K. Kurita, Y. Koyama and A. Taniguchi: J. Appl. Polym. Sci. Vol. 31 (1986) No. 5, P. 1169.

Google Scholar

[61] H. Lu, D. F. Wei, H. N. Xiao, A. N Zheng and F. Z. Hu: Acta Polym. Sin. (in Chinese), Vol. 1 (2007) No. 12, P. 1161.

Google Scholar

[62] S. A. Agnihotri and T. M. Aminabhavi: Int. J. Pharmaceut. Vol. 324(2006) No. 2, P. 103.

Google Scholar

[63] S. G. Cao, Z. F. Liu, B. H. Hu and H. Q. Liu: Chinese J. Polym. Sci. Vol. 28 (2010) No. 5, P. 781.

Google Scholar

[64] H. H. Liao, R. L. Qi, M. W. Shen, X. Y. Cao, R. Guo, Y. Z. Zhang and X. Y. Shi: Colloid Surface B, Vol. 84 (2011) No. 2, P. 528.

Google Scholar

[65] Z. X. Meng, W. Zheng, L. Li and Y. F. Zheng: Mater. Chem. Phys. Vol. 125 (2011) No. 3, P. 606.

Google Scholar

[66] J. L. Vondran, W. Sun and C. L. Schauer: J. Appl. Polym. Sci. Vol. 109 (2008) No. 2, P. 968.

Google Scholar

[67] Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim and S. Ramakrishna: Polymer, Vol. 47 (2006) No. 8, P. 2911.

Google Scholar

[68] Z. G. Chen, P. W. Wang, B. Wei, X. M. Mo and F. Z. Cui: Acta Biomater. Vol. 6 (2010) No. 2, P. 372.

Google Scholar

[69] J. P. Chen, G. Y. Chang and J. K. Chen: Colloids Surf. A, Vol. 313-314 (2008) No. 1, P. 183.

Google Scholar

[70] Y. F. Qian, K. H. Zhang, F. Chen, Q. F. Ke and X. M. Mo: J. Biomater. Sc. i Polym. Ed. Vol. 22 (2011) No. 8, P. 1099.

Google Scholar

[71] A. L. Hillberg, C. A. Holmes and M. Tabrizian: Biomaterials, Vol. 30 (2009) No. 27, P. 4463.

Google Scholar

[72] C. C. Tsai, R. N. Huang, H. W. Sung and H. C. Liang: J. Biomed. Mater. Res. Vol. 52 (2000) No. 1, P. 58.

Google Scholar

[73] K. H. Zhang, Y. F. Qian, H. S. Wang, L. P. Fan, C. Huang, A. L. Yin and X. M. Mo: J. Biomed. Mater. Res. Part. A, Vol. 95A (2010) No. 3, P. 870.

Google Scholar

[74] F. L. Mi, U. W. Sung and S. S. Shyu: J. Polym. Sci. Pol. Chem. Vol. 38 (2000) No. 15, P. 2804.

Google Scholar

[75] B. Dinan, N. Bhattarai, Z. S. Li and M. Q. Zhang: J. Undergrad. Res. Bioeng. Vol. 9 (2009) No. 1, P. 33.

Google Scholar

[76] A. Sionkowska, M. Wisniewski, J. Skopinska, S. Vicini and E. Marsano: Polym. Degrad. Stabil. Vol. 88 (2005) No. 2, P. 261.

Google Scholar

[77] M. Ignatova, K. Starbova, N. Markova and I. Rashkov: Carbohyd. Res. Vol. 341 (2006) No. 12, P. (2098).

Google Scholar

[78] J. Swei and J. B. Talbot: J. Appl. Polym. Sci. Vol. 90 (2003) No. 4, P. 1156.

Google Scholar

[79] M. Ignatova, N. Manolova and I. Rashkov: Eur. Polym. J. Vol. 43 (2007) No. 4, P. 1112.

Google Scholar

[80] Y. Jin, D. Z. Yang, Y. S. Zhou, G. P. Ma and J. Nie: J. Appl. Polym. Sci. Vol. 109 (2008) No. 5, P. 3337.

Google Scholar

[81] Y. S. Zhou, D. Z. Yang and J. Nie: Chin. Chem. Lett. Vol. 18 (2007) No. 1, P. 118.

Google Scholar

[82] L. Martinová and D. Lubasová: Res J Textile Apparel, Vol. 12 (2008) No. 2, P. 72.

Google Scholar

[83] A. Cooper, N. Bhattarai, F. M. Kievit, M. Rossol and M. Zhang: Phys. Chem. Chem. Phys. Vol. 13 (2011) No. 21, P. 9969.

Google Scholar

[84] R. Mincheva, N. Manolova and I. Rashkov: Eur. Polym. J. Vol. 43 (2007) No. 7, P. 2809.

Google Scholar

[85] H. Chen and Y. L. Hsieh: J. Polym. Sci. Pol. Chem. Vol. 42 (2004) No. 24, P. 6331.

Google Scholar

[86] J. Du and Y. L. Hsieh: Nanotechnology, Vol. 19 (2008) No. 12, P. 125707. 1.

Google Scholar

[87] T. Y. Song, C. Yao and X. S. Li: Chinese J. Polym. Sci. Vol. 28 (2010) No. 2, P. 171.

Google Scholar

[88] M. S. Austero, A. E. Donius, U. G. Wegst and C. L. Schauer: J. R. Soc. Interface, Vol. 9 (2012) No. 75, P. 2551.

Google Scholar

[89] S. I. Jeong, M. D. Krebs, C. A. Bonino, J. E. Samorezov, S. A. Khan and E. Alsberg: Tissue Eng. Part A, Vol. 17 (2011) No. 1-2, P. 59.

Google Scholar

[90] A. Hussain, G. Collins, D. Yip and C. H. Cho: Biotechnol. Bioeng. Vol. 110 (2013) No. 2, P. 637.

Google Scholar

[91] J. Almodóvar and M. J. Kipper: Macromol. Biosci. Vol. 11 (2011) No. 1, P. 72.

Google Scholar

[92] H. T. Zhang, C. Y. Wu, Y. L. Zhang, C. J. Branford White, Y. Xue, H. L. Nie and L. M. Zhu: J. Mater. Sci. Vol. 45 (2010) No. 9, P. 2296.

Google Scholar

[93] E. Ruckenstein and X. F. Zeng: J. Membr. Sci. Vol. 142 (1998) No. 1, P. 13.

Google Scholar

[94] X. R. Li, H. Zhang, H. Li, G. W. Tang, Y. H. Zhao and X. Y. Yuan: Polym. Degrad. Stab. Vol. 93 (2008) No. 3, P. 618.

Google Scholar

[95] L. Uebersax, M. Mattotti, M. Papaloizos, H. Merkle, B. Gander and L. Meinel: Biomaterials, Vol. 28 (2007) No. 30, P. 4449.

DOI: 10.1016/j.biomaterials.2007.06.034

Google Scholar

[96] F. Mottaghitalab, M. Farokhi, V. Mottaghitalab, M. Ziabari, A. Divsalar and M. A. Shokrgozar: Carbohyd. Polym. Vol. 86 (2011) No. 2, P. 526.

DOI: 10.1016/j.carbpol.2011.04.066

Google Scholar

[97] A. Divsalar, M. J. Bagheri, A. K. Saboury, H. Mansoori-Torshizi and M. Amani: J. Phys. Chem. B, Vol. 113 (2009) No. 42, P. 14035.

DOI: 10.1021/jp904822n

Google Scholar

[98] D. Z. Yang, Y. Jin, Y. S. Zhou, G. P. Ma, X. M. Chen, F. M. Lu and J. Nie: Macromol. Biosci. Vol. 8 (2008) No. 3, P. 239.

Google Scholar

[99] P. Liang, Y. Zhao and Q. Shen: J. Cryst. Growth, Vol. 261 (2004) No. 4, P. 571.

Google Scholar

[100] T. Yoshioka, H. Onomoto and H. Kashiwazaki: Mater. Trans. Vol. 50 (2009) No. 6, P. 1269.

Google Scholar

[101] P. Datta, S. Dhara and J. Chatterjee: Carbohyd. Polym. Vol. 87 (2012) No. 2, P. 1354.

Google Scholar

[102] C N. Cornell: Orthop. Clin. North Am. Vol. 30 (1999) No. 4, P. 591.

Google Scholar

[103] D. Z. Yang, K. Yu, Y. F. Ai, H. P. Zhen, J. Nie and F. K. John: Carbohyd. Polym. Vol. 84 (2011) No. 3, P. 990.

Google Scholar

[104] W. Wang, S. Itoh, N. Yamamoto, A. Okawa, A. Nagai and K. Yamashita: Acta Biomater. Vol. 6 (2010) No. 10, P. 4027.

Google Scholar

[105] Y. Wei, X. Zhang, Y. Song, B. Han, X. Hu, X. Wang, Y. Lin and X. Deng: Biomed. Mater. Vol. 6 (2011) No. 5, P. 055088.

Google Scholar

[106] T. C. Lin, F. H. Lin and J. C. Lin: Acta Biomater. Vol. 8 (2012) No. 7, P. 2704.

Google Scholar

[107] Y. P. Shan, G. C. Yang, J. Gong, X. L. Zhang, L. D. Zhu and L. Y. Qu: Electrochim. Acta, Vol. 53 (2008) No. 26, P. 7751.

Google Scholar

[108] J. X. Huang, S. Virji, B. H. Weiller and R. B. Kaner: J. Am. Chem. Soc. Vol. 125 (2003) No. 2, P. 314.

Google Scholar

[109] P. Gomathi, D. Ragupathy, J. H. Choi, J. H. Yeum, S. C. Lee, J. C. Kim, S. H. Lee and H. D. Ghim: Sensor Actuat. B Chem. Vol. 153 (2011) No. 1, P. 44.

Google Scholar